
UPaRC Quick Start Guide

Robin Bonamy, Sébastien Pillement and Hung Manh Pham
University of Rennes 1 - CAIRN-IRISA

sebastien.pillement@irisa.fr, robin.bonamy@irisa.fr

March 20, 2012

Introduction

UPaRC is a hardware intellectual property (IP) core dedicated to Xilinx FPGAs.
This IP provides very high speed reconfiguration rate including power consumption consideration.

This document includes file details to set up UPaRC. This software was tested on Virtex 5 and Virtex 6
architectures, using the Xilinx ISE 12.4. The name provided here may change depending on the user
change and the software version.

UPaRC

UReC

xps_reclogen_v1_00_a

xps_reclogen.vhd

PLB

user_logic.vhd

IPIF

dcm_drp.vhd

MD_tmp

slv_reg1

ReCloGen.vhd

drp_fsm.vhd
go

Mul_Div

CLKFX_OUT
DCM_ADVIP2Bus_CLK_Out

CLK_Out

bram_socket_v1_00_a

BRAM port

rapid_icap port

bram_socket.vhd

pselect_mask.vhd

rapid_icap_v1_00_c

 bram_socket port

rapid_icap.vhd

pselect_mask.vhd

clk

go
rst

ready

ICAP

clk

IRISA file

Xilinx file
or IP

Xilinx file,
 modified

Caption :

Figure 1: Hierarchical schematic of UPaRC files.

The Figure 1 presents the hierarchy of blocks involved in UPaRC instantiation. Rapid ICAP

1

and bram socket IPs are mandatory to instantiate the reconfiguration controller (UReC). Reclogen is
an IP to manage reconfiguration clock frequency and is used to face power considerations, it is not
mandatory in case you won’t manage power during runtime. Finally some software tools are provided
in order to format the bitstream to be handled by UReC.

The pcores directory contains all the vhdl and parameters files required for the synthesis of UPaRC.
The software directory contains the two above mentioned programs.

Provided IPs are designed to be used in Xilinx EDK. pcore provided directory is intended to
replace or complete existing pcore directory in your project tree. Then three IPs can be added to
the project as user core. You MUST add desired size of (dual port) BRAM to be used for UPaRC in
EDK project. One port must be connected to bram socket v1 00 a and the other one can be used to
preload bitstream at runtime, typically using a MicroBlaze. UPaRC stat signal can be controlled by
a GPIO.

UPaRC can be used outside EDK project but it is not recommended if you are not comfortable
with BRAM connection.

The following sections explain the role and the usage of each block and required file modifications.

1 xps reclogen v1 00 a

Reclogen is an IP designed to dynamically modify clock speed delivered to the reconfiguration port
(ICAP). This IP is controlled by a microprocessor core through multiplication and division ratio
registers addressed by a PLB bus. Clock is generated using a FPGA DCM dedicated module.

1.1 xps reclogen.vhd

xps reclogen.vhd is the file generated through the create IP wizard to interface microprocessor with
reclogen with two registers and no memory.

add IP2Bus_CLK_Out : out std_logic

at the end of the xps reclogen port section
add IP2Bus_CLK_Out => CLK_Out

in the user logic instantiation.

1.2 user logic.vhd

user logic.vhd file is a Xilinx generated file (from the same wizard as previous) but is modified as
follows :

use xps_reclogen_v1_00_a.dcm_drp;

in the libraries section.
add port for clock out : IP2Bus_CLK_Out : out std_logic

and add the dcm conection module at the end:

dcm_drp_ins : entity xps_reclogen_v1_00_a.dcm_drp
port map (Rst => Bus2IP_Reset ,

CLK => Bus2IP_Clk ,
Mul_Div => MD_tmp ,
go => slv_reg1 (31),
CLKFX_OUT => IP2Bus_CLK_Out

);

SWAP_HALF_WORD: process(slv_reg0)is
begin

2

for i in 0 to 15 loop
MD_tmp(i) <= slv_reg0 (31-i);

end loop;
end process SWAP_HALF_WORD;

1.3 dcm drp.vhd

dcm drp.vhd is a IRISA file. It is used to interface reclogen state machine with DCM. So it includes
the drp fsm.vhd file.

1.4 Reclogen.vhd

Reclogen.vhd is a Xilinx generated file using coregen for a DCM module. It is used for a DCM
connection.

1.5 xps reclogen v2 1 0.mpd

mpd files are required in Xilinx IP cores especially to set IOs.
Modify the xps reclogen v2 1 0.mpd to add
PORT CLK_Out = "", DIR = O

to have the CLK Out port in EDK.

1.6 xps reclogen v2 1 0.pao

pao files are used to include other vhdl files than the xps.. file.
Finally add

lib xps_reclogen_v1_00_a dcm_drp vhdl
lib xps_reclogen_v1_00_a drp_fsm vhdl
lib xps_reclogen_v1_00_a ReCloGen vhdl

to the pao file.

2 rapid icap v1 00 c

Rapid ICAP is the IP which controls the reconfiguration procedure. Configuration data are read
through bram socket which is presented in next section.

2.1 rapid icap.vhd

rapid icap.vhd is an IRISA file.
This is the core of UPaRC. This file includes the finite state machine required to handle reconfig-

uration and includes interface to ICAP. It requires Xilinx pselect mask.vhd file which can be found in
the proc common pcore in the Xilinx setup path.

2.2 rapid icap V2 1 0.pao

Add lib rapid_icap_v1_00_c pselect_mask vhdl

to the rapid icap V2 1 0.pao.

3

2.3 to the rapid icap V2 1 0.mpd

Declare the input/ouput of the rapid icap in the .mpd file:

Signals
PORT clk = "", DIR=IN , SIGIS=CLK
PORT rst = "", DIR=IN
PORT go = "", DIR=IN
PORT ready = "", DIR=OUT

PORT BRAM_Rst = BRAM_Rst , DIR = O, BUS = PORTA
PORT BRAM_Clk = BRAM_Clk , DIR = O, BUS = PORTA
PORT BRAM_EN = BRAM_EN , DIR = O, BUS = PORTA
PORT BRAM_WEN = BRAM_WEN , DIR = O, VEC = [0:3], BUS = PORTA
PORT BRAM_Addr = BRAM_Addr , DIR = O, VEC = [0:31] , BUS = PORTA
PORT BRAM_Din = BRAM_Din , DIR = I, VEC = [0:31] , BUS = PORTA
PORT BRAM_Dout = BRAM_Dout , DIR = O, VEC = [0:31] , BUS = PORTA

END

3 bram socket v1 00 a

This IP provides interface between rapid ICAP and the BRAM IP from Xilinx.

3.1 bram socket.vhd

bram socket.vhd file is an IRISA file.
it requires pselect mask.vhd too.

3.2 bram socket V2 1 0.pao

Add lib bram_socket_v1_00_a pselect_mask vhdl

to the bram socket V2 1 0.pao file.

3.3 bram socket V2 1 0.mpd

Declare also the connection and the pad of bram socket V2 1 0 in the correct file (i.e. the .mpd): add

Signals
PORT Rst = Rst , DIR = I, SIGIS = RST
PORT Clk = Clk , DIR = I, SIGIS = CLK
PORT EN = EN , DIR = I
PORT WEN = WEN , DIR = I, VEC = [0:3]
PORT Addr = Addr , DIR = I, VEC = [0:31]
PORT Din = Din , DIR = O, VEC = [0:31]
PORT Dout = Dout , DIR = I, VEC = [0:31]

PORT BRAM_Rst = BRAM_Rst , DIR = O, BUS = PORTA
PORT BRAM_Clk = BRAM_Clk , DIR = O, BUS = PORTA
PORT BRAM_EN = BRAM_EN , DIR = O, BUS = PORTA
PORT BRAM_WEN = BRAM_WEN , DIR = O, VEC = [0:3], BUS = PORTA
PORT BRAM_Addr = BRAM_Addr , DIR = O, VEC = [0:31] , BUS = PORTA
PORT BRAM_Din = BRAM_Din , DIR = I, VEC = [0:31] , BUS = PORTA

4

PORT BRAM_Dout = BRAM_Dout , DIR = O, VEC = [0:31] , BUS = PORTA

END

4 UPaRC bitstream conversion file

Two programs, bit2uparc and bit2mem, are provided to convert the bitstreams to load to UReC.
As UReC is a very simple controller with a single start signal, the size of the handled bitstream is
required at the beginning of the transfer. These converters replace Xilinx bitstream header by only
the bitstream’s size. Bitstream content is not modified.

Source code is provided and so need to be compiled. Using gcc and Linux for example,
gcc bit2uparc.c -o bit2uparc and gcc bit2mem.c -o bit2mem.

Since bitstream must be preloaded to BRAM buffer before partial dynamic reconfiguration, either
data are preloaded with the FPGA configuration, at startup, using the BRAM data bitstream section
or data are loaded during runtime by the reconfiguration manager.

Only output file is different between two software.

4.1 bit2uparc

bit2uparc translates a Xilinx generated bitstream file to UPaRC reconfiguration data. File generated
contains the bitstream length in the first 32bits. Then configuration data are directly copied from the
original bitstream file.

• offboard:

– run ./bit2uparc partial.bit partial.uparc

• onboard:

– directly load the complete partial.uparc file to UPaRC BRAM.

– handle UPaRC start signal

4.2 bit2mem

bit2mem translates Xilinx bitstream files into files used to preload BRAM memory. It does the same
modifications that bit2uparc do but output file is in mem format to add it to Xilinx bitstream.

• offboard:

– run ./bit2mem partial.bit partial.mem

– run data2mem -bd partial.mem -bt system.bit -ob download.bit

• onboard:

– handle UPaRC start signal

Conclusion

This document has presented files and modifications required to set up UPaRC and enhance reconfig-
uration performance. In case of any problem feel free to contact us.

5

