
No d’ordre : 3970 ANNÉE 2010

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Traitement du Signal et Télécommunications
École doctorale MATISSE

présentée par

Hung-Manh Pham
préparée à l’unité de recherche UMR6074 IRISA

Institut de recherche en informatique et systèmes aléatoires - CAIRN
École National Supérieure des Sciences Appliquées et de Technologie

Embedded computing

architecture with
dynamic hardware

reconfiguration for

intelligent automotive

systems

Thèse soutenue à Rennes
le 15 Decembre 2010
devant le jury composé de :

Jean ARLAT
Directeur de recherche CNRS
LAAS / examinateur

Michel RENOVELL
Directeur de recherche CNRS
LIRMM / rapporteur

Guy GOGNIAT
Professeur, Université de Bretagne-Sud / rapporteur

Stanisław J. PIESTRAK
Professeur, Université de Metz / examinateur

Didier DEMIGNY
Professeur, Université de Rennes 1/directeur de thèse

Sébastien PILLEMENT
Maître de Conférences,
Université de Rennes 1 / co-directeur de thèse

"When you are courting a nice girl, an hour seems like a second. When you sit on a

red-hot cinder, a second seems like an hour. That’s relativity."

—Albert Einstein

Acknowledgements

I take this opportunity to acknowledge and thank all those people who supported me

during my PhD.

First of all, I would like to thank first my advisor Prof. Dr. Didier Demginy for his

support throughout my PhD work. His suggestions and remarks have always been pro-

ductive and constructive that are invaluable for my research. I would like to express

my sincere gratitude to my co-advisor Dr. Hab. Sébastien Pillement. His continuous

support during the PhD work, his constructive feedbacks, comments and suggestions at

various stages and his gentleness have been significantly useful in shaping the thesis up

to the completion. Without any of these, it would not have been possible to complete

this PhD thesis.

I also want to thank all the members of the jury who evaluated this work: Jean Arlat

(Director of Research CNRS, LAAS, Toulouse), Michel Renovel (Director of Research

CNRS, LIRMM, Montpellier), Guy Gogniat (professor at Université de Bretagne-Sud)

and Stanisław J. Piestrak (Professor at University of Metz).

I wish to thank all the member of IRISA/CAIRN Lab who make my stay a memorial

period. It is a great pride for me completing the PhD thesis in this dynamic Lab. That

is the reason I want to thank the head of Lab Prof. Dr. Oliver Sentieys for his kind

attitude, generous help and prestigious suggestions during my PhD thesis. I am equally

thankful to Prof. Dr. Stanisław J. Piestrak for his advices, his scientific open-mind and

his politeness that are really helpful for my research activity.

I am equally thankful to the partners of the CIFAER project for all the scientific ex-

changes and discussions. I am extremely grateful to the Conseil Général de Côtes

d’Armor (CG22) and the Conseil Régional de Bretagne for their finance supports of

this thesis.

Finally, I would like to thank my parents for their never ending supports, that help me

stay concentrated on my thesis.

II

Contents

Acknowledgements II

List of Figures VI

List of Tables VIII

Résumé en français i
Problématique . i
Objectifs . iv
Contribution . v

1 Introduction 1
1.1 Problem statements . 1
1.2 The CIFAER project context . 5
1.3 Objectives . 7
1.4 Contributions and content . 8

2 Background and Related Works 11
2.1 Reconfigurable architecture . 11

2.1.1 Introduction . 11
2.1.2 Reconfigurable processor . 13

2.2 Dynamic reconfiguration . 14
2.2.1 Definition . 14
2.2.2 Design flow . 16

2.3 Fault-tolerance in reconfigurable architectures 18
2.3.1 Fault models in reconfigurable architectures 19

2.3.1.1 Single Event Effect . 20
Single Event Upset . 20
Single Event Functional Interrupt 20
Single Event Latch-Up . 21
Single Event Gate Rupture/Burnout 21

2.3.1.2 Long terms cumulative degradation 21
2.3.2 SEU effects on configuration memory 21

Configuration upset classification 22
2.4 Classical fault mitigation schemes . 24

2.4.1 Architectural level . 24

III

Contents IV

2.4.1.1 Hardware redundancy . 24
2.4.1.2 Time redundancy . 27
2.4.1.3 Error-correcting code . 28

2.4.2 System level . 28
2.4.3 Context recovery strategies . 29

2.4.3.1 Context introduction . 29
Processor context . 29

2.4.3.2 Checkpointing and Rollback [1] 30
2.4.3.3 Rollforward [1] . 30

2.5 Strategies for SEU . 31
2.5.1 Readback . 31
2.5.2 Partial reconfiguration . 32
2.5.3 Combined approaches . 34
2.5.4 Fault-Injection . 35

2.6 Summary and Conclusions . 36

3 Fault-tolerance in dynamic multi-processor system-on-chip 39
3.1 Abstract . 39
3.2 Introduction . 40
3.3 FT-DyMPSoC . 41
3.4 Design flow modification . 47

3.4.1 Design flow modification . 48
3.4.2 Socket . 50
3.4.3 Wrapper . 50

3.5 FT-DyMPSoC amelioration . 51
3.5.1 Re2DA system . 51
3.5.2 Multi-FPGA platform . 53

3.6 Implementation details . 56
Re2DA system . 60
Multi-FPGA platform . 60

3.7 Conclusion . 61

4 Analytical Model 63
4.1 Abstract . 63
4.2 Introduction . 63
4.3 Analytical Model . 65

4.3.1 General definitions . 65
4.3.2 Analytical model for FT-DyMPSoC 67
4.3.3 Model application for scrubbing . 70

4.4 Experimentation details and comparisons 72
4.4.1 Implementation . 72
4.4.2 Comparison . 73

4.5 Conclusion . 76
4.6 Simulation and verification model for

fault-tolerant MPSoC . 77
4.6.1 Implementation . 80
4.6.2 Analysis . 81

Contents V

4.6.3 Conclusions and Future Works . 82

5 Low overhead fault-tolerant reconfigurable softcore processor 83
5.1 Abstract . 83
5.2 Introduction . 83
5.3 New fault-tolerant architecture . 86

5.3.1 Enhanced lockstep scheme . 87
5.3.2 Fault-tolerant configuration engine 88

5.3.2.1 Scan Motor . 89
5.3.2.2 Bitstream Parser . 89

5.4 Fault mitigation strategy . 91
5.5 State recovery procedure for enhanced lockstep scheme 92
5.6 Implementation details and comparison 94
5.7 Conclusion and Perspectives . 102

6 Conclusion and Perspectives 103
6.1 Conclusion . 103
6.2 Perspectives . 105

Bibliography 110

Abbreviations 110

List of Figures

1.1 Trends in automotive electronics industry (data provided by TRW Auto-
motive [2]) . 5

1.2 CIFAER project organization . 6

2.1 Generic FPGA architecture . 12
2.2 Microprocessor-based system controlling reconfigurable resources 16
2.3 Standard design flow for dynamically reconfigurable system 17
2.4 SEE classification . 19
2.5 SEU effect on the state of a memory cell 20
2.6 SEU effects on Configuration Memory of Xilinx Virtex 22
2.7 Non-persistent upset . 23
2.8 Persistent upset . 24
2.9 Duplication with comparison (DWC) . 25
2.10 SAPECS ECU with fault detection . 25
2.11 Triple modular redundancy (TMR) . 26
2.12 Majority voter and truth table . 26
2.13 Xilinx TMR—XTMR scheme . 27
2.14 Time redundancy scheme for combinational logic 27
2.15 Multi-FPGA ReCoNets demonstrator . 29
2.16 Rollback recovery using checkpointing . 30
2.17 Rollback in duplex system . 30
2.18 Rollforward scheme . 31
2.19 Tiling principe . 34
2.20 SEU and SET mitigation design flow . 37

3.1 FT-DyMPSoC structure . 43
3.2 Connection matrices algorithm . 44
3.3 Timing diagram of FT-DyMPSoC . 45
3.4 Tiling technique using PROHIBIT . 46
3.5 Fault mitigation scheme . 47
3.6 Design hierarchy . 48
3.7 Modified design flow for complex dynamically reconfigurable system . . . 49
3.8 Internal structure of Re2DA . 52
3.9 Fault-tolerant multi-FPGA platform . 53
3.10 Fault recovery strategies. 54
3.11 FPGA Editor view of implemented system with automotive applications . 56
3.12 Synchronization duration . 58

VI

List of Figures VII

4.1 System performance with three processors and Tint = 100ms 74
4.2 System Reliability with three Processors and Tint = 100ms 74
4.3 Performance vs. reliability with Failure Rate=151 FIT 75
4.4 Proposed model . 78
4.5 Fault-tolerance mechanism . 79
4.6 Execution model . 79
4.7 Sample Codes . 80

5.1 Basic lockstep scheme . 84
5.2 Checkpointing and rollback for basic lockstep recovery 85
5.3 Block scheme of the fault-tolerance architecture 86
5.4 Enhanced lockstep scheme . 87
5.5 Configuration engine . 89
5.6 Bitstream composition (Table 6.15, p. 129 in [3]) 90
5.7 Fault mitigation strategy for the enhanced lockstep scheme 91
5.8 Rollforward state recovery process for enhanced lockstep scheme 93
5.9 Recovery process detail for the enhanced lockstep scheme 94
5.10 90◦-rotated view of implemented system 94
5.11 Three tiling implementations of µP1 . 95
5.12 Context recovery C code . 98
5.13 MPSoC systems with hardware overhead comparison 100

List of Tables

3.1 System hardware resources . 57
3.2 Bitstream manipulation time . 58
3.3 Comparison of different fault-tolerance techniques 59
3.4 Ethernet performance measurement . 61

4.1 Experimental results . 73

5.1 FPGA resource occupations of enhanced lockstep modules 96
5.2 Comparison between approaches (trec = 5.2 µs) 99
5.3 Statistic fault-injection results . 101

VIII

Résumé en français

Problématique

Dans les domaines tels que le militaire, l’aérospatial, l’automobile et le médical, les ap-

plications critiques nécessitent la mise en place de stratégies de tolérance aux fautes

pour assurer le fonctionnement fiable du système. En effet dans ces domaines, une faute

pendant le fonctionnement de ces systèmes peut mettre en danger la vie humaine ou

l’environnement. Les exigences de fiabilité posent de nouveaux défis pour la conception

de systèmes embarqués électroniques. L’industrie automobile a observé une transition

importante de la mécanique vers la mécatronique. Les contrôles mécaniques sont de

moins en moins présents et sont remplacés par des composants électroniques (Contrôle

X-by-wire) appelé ECU (unité de contrôle électronique). L’omniprésence des calcula-

teurs a conduit l’industrie de l’électronique automobile à faire face aux mêmes défis des

exigences de sécurité que le domaine spatial.

Les solutions classiques pour améliorer la fiabilité et la sécurité s’appuient sur la mul-

tiplication des ressources et la notion de redondance des éléments de traitement. Le

fonctionnement correct de l’ensemble du système est assurée par le fait que les erreurs

ne concernent qu’une seule instance du système. Le principe de la redondance permet

d’identifier une instance du circuit qui donne un résultat différent, permettant de fait

d’identifier un fonctionnement anormal. Ces techniques de tolérance aux fautes ont un

impact fort en terme de coût sur la conception des systèmes. La redondance matérielle a

évidemment besoin de plus de ressources matérielles pour mettre en œuvre une fonction.

Hormis les questions de coût, la redondance des ressources de calcul pose le problème

du taux d’utilisation des circuits. En effet, la multiplication des modules peut limiter la

i

Résumé en français ii

mise en œuvre d’autres modules dans une plateforme donnée et donc limiter la puissance

de traitement de l’ensemble du système.

Dans le même temps, les applications sont de plus en plus complexes pour les systèmes

électroniques en général et pour les contrôles électroniques de l’automobile en particulier.

Cette tendance induit la conception de systèmes de calcul parallèles pour résoudre des

problèmes complexes avec des contraintes de temps fortes. Un système de calcul parallèle

est constitué de différents éléments de traitement (PE pour Processing Element) qui

travaillent en collaboration pour résoudre un problème. Les systèmes embarqués, qui

contiennent des processeurs combinant la flexibilité de la programmation logiciel avec la

puissance de traitement des composants matériels dédiés, ne sont plus utilisés comme

simple contrôleurs. Ces systèmes doivent offir de plus en plus de puissance de calcul

pour satisfaire les demandes, comme l’encodage/décodage audio/vidéo, le traitement

d’image, etc. et les systèmes multiprocesseurs sur puce (MPSoC) sont une option pour

faire face à cette augmentation des besoins en performance. Cette approche offre une

certaine flexibilité grâce à la reprogrammation du logiciel, tout en supportant de haute

performance grâce à l’exécution de nombreuses fonctionnalités en parallèle.

Les récentes évolutions technologique au sein de l’industrie des semiconducteurs per-

mettent aux fabricants d’équipement de développer de nouvelles technologies pour amé-

liorer la qualité, la performance et la fiabilité. Des fonctions spécifiques sont souvent mises

en œuvre dans les circuits intégré spécifique à l’application (ASIC). Cependant ces cir-

cuits n’offrent aucune flexibilité permettant une adaptation des circuits post-fabrication.

A côté des exigences accrues de performance, de qualité et de fiabilité, l’industrie élec-

tronique doit de plus travailler sur la réduction du coût du produit. L’attente sur la

réduction des coûts oblige les fournisseurs à développer de nouvelles technologies tout en

améliorant l’efficacité de fabrication. La solution ASIC nécessite souvent un important

délais de conception et des coûts de fabrication prohibitif pour des circuits en petite série.

Ceci est en contradiction avec les tendances industrielles. Une solution aux problèmes de

coût et de besoin en flexibilité est l’utilisation de circuits reconfigurable de type Field

Programmable Gate Arrays (FPGA).

Les fournisseurs de FPGA ont profité des dernières évolutions technologiques pour offrir

Résumé en français iii

des circuits qui peuvent inclure des millions de portes programmable intégrées avec plu-

sieurs méga-octets de mémoire interne et des cœurs de processeur adaptés à la personna-

lisation d’une grande variété d’applications. La combinaison de propriétés intellectuelle

réutilisables (IPs), de faibles coûts unitaires et une relative facilité de mise en œuvre

ont entraîné une utilisation grandissante des FPGA dans les domaines critiques comme

l’automobile par exemple.

Hormis les aspects financier, les FPGA permettent aussi une mise oeuvre et des temps

de développement très rapide. L’utilisation de FPGA peut permettre d’introduire rapi-

dement de nouvelles fonctionnalités ou d’adapter les systèmes après leur déploiement..

Cette évolution est supportée par les accords entre les fabricants de circuits FPGA et

des fournisseurs tiers afin d’offrir des IPs dédié, comme les contrôleurs de communica-

tion ciblées spécifiquement aux applications automobiles (CAN, MOST, FlexRay, etc.).

D’un autre point de vue les FPGA offrent des niveaux de performances très supérieur à

l’utilisation de processeur classique. Ainsi ces technologies sont de plus en plus utilisées

dans des applictions critiques, mais nécessite la prise en comptes de nouvelles contraintes

lors de la conception des systèmes.

Il est maintenant reconnu que les circuits logiques reconfigurables répondent aux exi-

gences de performances de traitement et au défi de l’évolutivité des applications. Le

principal avantage de ce type de solution réside dans la possibilité de ne pas augmenter

systématiquement les ressources de calcul, mais plutôt de profiter de la généricité de

l’équipement proposé pour optimiser l’utilisation des ressources, notamment en fonction

des temps creux.

Contrairement à un ASIC, où le coût de fabrication depasse le million de dollars, le coût

de conception d’un FPGA est relativement faible.

Ces temps de développements faibles permettent alors d’itérer plusieurs fois afin de

concevoir un système complexe répondant aux contraintes des applications. En outre, les

FPGA modernes supportent la reconfiguration dynamique partielle, qui est une fonction-

nalité avancée permettant de renforcer encore la flexibilité et, éventuellement, la fiabilité

du système ciblé. La reconfiguration dynamique partielle permet aux modules de parta-

ger temporairement des ressources physiques. Cette caractéristique permet de modifier

la fonctionalité d’une partie du FPGA tandis que les autres blocs continuent de fonction-

ner. En utilisant la reconfiguration partielle, les concepteurs peuvent considérablement

Résumé en français iv

augmenter les fonctionnalités d’un seul FPGA, permettant de mettre en œuvre un sys-

tème avec des circuits plus petits. Exploiter la reconfiguration partielle permet de mettre

en œuvre les techniques traditionnelles de tolérance aux fautes en utilisant les ressources

reconfigurables disponibles comme support à la redondance classique. Par ailleurs, la

reconfiguration dynamique apporte des avantages supplémentaire aux approches clas-

siques de tolérance aux fautes. En effet, la reconfiguration dynamique partielle facilite la

récupération du système aprés apparition d’une faute par, resynchronisation partielle du

module défectueux sans perturber les autres modules, ou en modifiant le système afin

de migrer les tâches du module fautif. En conclusion, non seulement les FPGA intro-

duisent un plus haut niveau de flexibilité, mais ils permettent aussi une continuité de

service plus important. Grâce à l’aspect dynamique et partiel de la reconfiguration des

FPGA, le fonctionnement du système est garanti sans interruption, ce qui peut faciliter

le passage en mode dégradé avec le maintien services les plus essentiels.

Une tendance actuelle est d’exploiter la reconfiguration dynamique partielle dans les

systèmes multi-processeurs pour créer des MPSoCs dynamiques. Cette coordination in-

troduit un nouveau degré de liberté à la conception du système et au comportement

du systèmependant l’exécution. La flexibilité est alors supportée par une approche lo-

gicielle, comme dans les MPSoC classiques, mais le matériel peut aussi être adapté en

cours d’exécution pour supporter des changements de conditions d’exécution. Cette adap-

tation de l’architecture matérielle pendant l’exécution offre au concepteur un nouveau

degré de flexibilité afin d’assurer une répartition optimisée des tâches de calcul sur les

cellules de traitement et de répondre aux contraintes de performances, de puissance et

de consommation de surface.

Objectifs

Dans ces travaux de thèse, nous proposons de démontrer l’intérêt des nouvelles tech-

nologies reconfigurables dynamiquement dans le domaine de l’automobile et plus géné-

ralement dans le domaine de la sûreté de fonctionnement. L’utilisation de calculateurs

reconfigurables dynamiquement a un double apport :

1. la réduction du nombre de calculateurs diminuant ainsi les coûts de mise

en œuvre, et permettant d’offrir une certaine redondance du matériel. En outre

Résumé en français v

ces architectures offrent un support d’exécution unifié pour l’ensemble des tâches

à exécuter, qu’elles soient critiques ou non. Le taux d’occupation du matériel est

amélioré par réutilisation des calculateurs pendant leurs périodes oisives ;

2. le support efficace des approches classiques et industrielles de la sûreté de fonc-

tionnement. En réalisant une détection de fautes sur les calculateurs reconfigu-

rables et en la couplant avec un mécanisme de migration des tâches (matérielles et

logicielles), il est alors possible d’augmenter de façon significative la robustesse du

système, tout en conservant des performances optimales. Nous utiliserons dans ces

travaux les techniques classiques pour les aspects détections de fautes.

Le premier point dur vient de l’étude des architectures matérielles des calculateurs re-

configurables, compatible avec les contraintes de coût liées au domaine, ainsi qu’aux

contraintes de complexité des algorithmes et de temps-réel. Le deuxième point dur concer-

nera alors l’interface entre le calculateur et le véhicule si l’on implémente de la migration

de tâches suite à la détection d’une faute.

Sur la base de l’architecture matérielle développée et de son logiciel de contrôle, un

démonstrateur mettant en œuvre la reconfiguration dynamique partielle, ainsi que les

services gérant la sûreté de fonctionnement, a été réalisé durant la thèse.

Contributions

En général, les mécanismes de tolérance aux fautes nécessitent des ressources matériels

supplémentaires pour supporter la redondance ce qui limite le nombre d’éléments de

traitement implémentable et par conséquent, limiter la capacité du système. Ainsi, des

défis émergent de l’application de techniques de tolérance aux fautes peuvent réduire la

puissance de calcul du système final. Durant cette thèse, nous avons maîtrisé la reconfi-

guration dynamique partielle et nous l’avons combiné avec des techniques de tolérance

aux fautes. La reconfiguration dynamique, d’une part, contribue à améliorer la fiabilité

du système et à améliorer les performances en minimisant l’impact de la tolérance aux

fautes, d’autre part, elle permet d’accroître la flexibilité en incluant la possibilité de

changer la fonctionalité des circuist à la demande.

Résumé en français vi

Prémièrement nous introduisons un système multi-processeur complétement dynamique

et tolérant aux fautes (FT-DyMP SoC). Ce système implémente l’ensemble des caracté-

ristiques d’un MPSoC (performance et flexibilité) et intègre également des mécanismes

de tolérance aux fautes. La détection de fautes est réalisée à différents niveaux : au ni-

veau de chaque processeur par l’implémenttion de mécanisme de type LockStep et au

niveau système par l’implémentation d’une matrice de connexion. Tous les processeurs

dans FT-DyMPSoC sont dynamiques, c’est à dire que n’importe quel processeur peut

être reconfiguré par un autre processeur en cas d’erreurs détéctées. L’originalité de notre

système vient du fait qu’il n’y a aucun processeur statique comme dans les autres sys-

tèmes. Ce processeur est alors un point faible du point de vue de la tolérance aux fautes.

Une autre difficulté provient de la construction du système. En effet, il faut pouvoir re-

configurer l’ensemble des processeurs incluant l’ensemble de leurs périphériques. Cette

approche n’est actuellement pas supporté par le flot de conception classique proposé par

le fabricant de circuit. Nous introduisons donc une modification du flot de conception

qui facilite la création de processeurs entièrement dynamique. Le flot modifié nécessite la

définition du concept de wrappers et sockets. Le support de ces composants (wrappers et

sockets) permet de simplifier le processus de synthèse lors de la construction de systèmes

complexes. Ils permettent de palier au manque des outils en introduisant des connexions

virtuelles entre les processeurs et les périphériques dynamiques du système.

L’implémentation de méthodes de tolérances aux fautes dans les systèmes embarqués

s’accompagnent toujours de surcoût matériel et/ou temporel. Il est donc important de

pouvoir évaluer au plus tôt les pénalités introduites par ce type d’approches. Ainsi, un

modèle analytique est proposé pour aider à accélérer l’évaluation du compromis perfor-

mance/fiabilité tout en incluant la technique de tolérance aux fautes dans les systèmes

cibles. Nous avons appliqué notre modèle à notre système mais aussi à une technique

classique de la tolérances aux fautes, le scrubbing. Cette technique vise à reconfigurer

régulièrement le FPGA afin d’éviter les changements de valeur des bits de configuration.

Les résultats obtenus et validés montre que notre système supporte un meilleur compro-

mis performance/fiabilité que le scrubbing. En outre, notre modèle n’est pas seulement

limité aus systèmes utilisant des architectures reconfigurable, il peut être utilisé de ma-

nière plus générale pour des système tolérants aux fautes en adaptant les paramètres à

l’architecture cible.

Résumé en français vii

La duplication du matériel présente un avantage en terme de surcout matériel par rap-

port à la triplication qui nécessite de reproduire trois fois un même chemin de données.

A contrario la duplication ne permet pas de corriger une faute dans le système mais ne

permet que la détection de cette dernière. Dans nos travaux nous avons alors proposer

un système utilisant la reconfiguration dynamique permettant de corriger les fautes dans

un système lockstep (duplication) de processeur reconfigurable dynamiquement. Le sys-

tème lockstep contient deux copies d’un même processeur capable de détecter les erreurs

grâce à un indicateur de différence. Notre proposition renforce le lockstep en ajoutant

la capacité de localiser la faute et de ce fait de permettre une correction. Un moteur

de configuration (Configuration engine) proposée surveille le système en arrière-plan. Ce

composant permet par relecture des frames de configuration et par calcul de CRC d’iden-

tifier la frame fautive éventuelle permettant de locaiser l’erreur. Nous avons développé

le COMP_MUX (Comparateur/Multiplexer) qui contien un comparateur standard per-

mettant de détecter toute incohérence entre les deux processeurs identiques, dans cette

éventualité l’opération de localisation des fautes du configuration engine est lancé. Après

localisation de la faute, la sortie du processeur non fautif est immédiatement passée à la

sortie finale grâce au multiplexeur , de ce fait les sorties fausses sont bloquées mais le sys-

tème continue d’être opérationnel. Les composants ajoutés au système (COMP_MUX

et Fault-Tolerant Configuration Engine) sont durcis pour être eux même tolérants aux

fautes. Ainsi le COMP_MUX est intégré dans une zone de reconfiguration dynamique,

et le FTCE est tripliqué. Cette triplication est cependant moins couteuse que la tripli-

cation des processeur beaucoup plus gros. Un autre avantage de notre proposition est sa

généricité puisqu’elle peut être appliqué à n’importe quel coeur de calcul qu’il suffit de

dupliquer.

Chapter 1

Introduction

1.1 Problem statements

Critical applications from particular domains such as military, aerospace, automotive and

medical imaging require the implementation of fault-tolerance strategies to ensure reliable

operations during system life-time. A defect during operation of safety critical systems

may endanger human lives or the environment. The stringent requirements in term of

reliability pose new challenges to electronic designers. Remote space applications have

encountered this problematic due to the impossibility to repair systems after launch in

space. State-of-the-art research and industry solutions attempt to alleviate the penalty of

implementing fault-tolerance schemes. Recently, the automotive industry has observed a

significant transitions from mechanical engineering towards mechatronical products. The

mechanical control is less present, and is being replaced by electronic components (X-by-

wire control) called ECU (electronic control unit). The omnipresence of ECUs has led

the electronic automotive industry to face the similar challenges of safety requirements

for electronic devices.

Also, due to the process variation and aging, after long time of operation, electronic

circuits accumulate harmful physic phenomena which can provokes faults. The effect of

this type of fault is permanent and it is not possible to deal with by using strategies for

transient faults.

1

Chapter 1. Introduction 2

Conventionally, the solutions adopted to deal effectively with the safety problem tend to

the multiplication of computing resources and the concept of processing element redun-

dancy. The correct functioning of the overall system is ensured by the fact that single

errors affect only one of the design instances. Hence, one instance who react differently

from the others can be distinguished and supposed to be faulty. Unfortunately redun-

dancy becomes a major issue of fault-tolerance techniques in term of cost overhead. The

hardware redundancy obviously needs more resources to implement a function. Besides

the cost issues, the redundancy of computing resources poses the problem of their uti-

lization ratios due to the resources overhead. The resources overhead of a module can

limit the implementation of other functions in a given platform, so potentially limit the

processing power of the global system.

This limitation of processing performance can have dramatic impact on modern appli-

cation. More and more complex applications for electronic systems in general and for

electronic automotive controls in particular led to a large-scale integration of electronic

components. This trend induces parallel computing systems for solving complex prob-

lems with specific time constraints. A parallel computing system is made up of various

processing elements (PE) that work cooperatively to solve a problem. Embedded systems

contain general-purpose processors for flexibility of software programming and dedicated

hardware components for processing peformance. Embedded systems need more compu-

tational power to satisfy today’s applications’ needs, like audio/video encoding/decoding,

image processing, etc. Multiprocessor systems-on-a-chip (MPSoCs) are an option to deal

with this increasing computational requirements. This approach offers certain flexibility

thanks to the software reprogrammability. Moreover, a high-performance system can

be built-up with the execution of many functionalities in parallel on different processor

cores.

Recently, the technological and process advances within the semiconductor industry allow

the manufacturers to develop and support new technologies to improve the quality, the

performance and the reliability of systems. Dedicated hardware circuits (ASICs) can

respond to real-time constraints and permit ultimate reliability schemes, but they do

not offer the required flexibility. Thus a flexible, programmable hardware acceleration is

needed.

Along with the increased performance, quality and reliability requirements, the electronic

Chapter 1. Introduction 3

industry has also a significant focus on product cost reduction. The expectation on

cost reduction forces the manufacturers to develop new technologies while improving

manufacturing efficiencies in order to meet targeted cost reductions. The ASIC solution

often requires a significant lead-time and nonrecurring engineering (NRE) costs to bring

the design to fabrication. This is in conflict with industry trends. A solution to this

problem, gaining acceptance in the automotive industry, is Field Programmable Gate

Arrays (FPGAs) which permits to add flexibility, reduce the costs and support required

performances.

FPGA suppliers have taken advantage of technology evolution to offer reconfigurable

devices that can include millions of programmable gates along with megabytes of internal

memory and processor cores suitable for customizing a large variety of applications. The

combination of reusable intellectual properties (IPs), low unit costs and relative ease of

implementation has led to increased FPGA appearance in the industry. Designers are

turning to FPGA solutions to enable the required features and functions not currently

available with standard components. This technology acceptance is partially due to

increased marketing efforts from FPGA manufacturers, but largely due to the lower

prices of the products.

However, it is not just only price that makes FPGA an attractive solution. Also a new

effort toward reducing the time-to-market cycles of electronic products is introduced. The

use of FPGAs can allow for the rapid introduction of new functionalities without the long

lead times typical in the development of custom ASICs. This is evident by the combined

effort of FPGA suppliers and third-party vendors to provide dedicated specific content,

such as communication controller cores targeted specifically for automotive applications

(CAN, MOST, FlexRay, etc.). Moreover, the cost advantages of an FPGA vs. an ASIC

tip the scale especially as the actual process technology nodes decrease, where the mask

costs alone can exceed one million dollars [4].

It is now recognized that the reconfigurable logic circuits can meet the processing perfor-

mance requirements and the challenge of scalability of applications. The main advantage

of this type of solution lies in the possibility of not systematically increase the number

of processing elements, but rather to enjoy the genericity of the proposed architecture to

optimize the utilization of resources particularly following the idle time.

Chapter 1. Introduction 4

The concept of re-programmability has dictated much of the approach to FPGA design.

Unlike an ASIC, where the cost of a redesign can exceed a million dollars, the cost to

fix an FPGA design is perceived to be relatively low. Hence, FPGA designs appear to

allow fast creation and system-level integration testing of the design, with fine-tuning

and design modification being completed through multiple reprogramming of the device.

Moreover, recent advanced feature present in modern FPGAs—dynamic partial reconfig-

uration (DPR), provides further opportunities to enhance the flexibility and possibly the

reliability of the target system. DPR allows multiple design modules to time-share phys-

ical resources. This feature enables run-time modification of one portion of the FPGA

while the rest of the circuit keep running. By using DPR, designers can dramatically

increase the functionality of a single FPGA, allowing a system to be implemented with

fewer and smaller devices than is otherwise required. Exploiting DPR for automotive

electronic system enables to implement traditional fault-tolerance techniques like clas-

sical redundancy using available reconfigurable resources. Furthermore, DPR paradigm

permits to developped new strategies for fault-tolerant system design. For example, the

DPR eases the system recovery mechanism after a fault occurrence by, either bringing

the defected module to the correct functioning with its tasks without disrupting other

modules, or modifying another module to carry out interrupted tasks. Not only a higher

level of flexibility is introduced, but also the service continuity is considerably increased.

Thanks to the non-restart of the whole FPGA, the operation state of the system is guar-

anteed, which can permit to easily switch to a degraded mode with the maintain of most

critical services.

A new trend is to exploit the DPR feature into multiprocessor platform design to form

dynamic MPSoCs. This coordination introduces a new degree of freedom for system

design and run-time behavior. In a such system not only the software, like in static

MPSoCs, but also the hardware can be adapted at run-time. This dynamic adaptation

of the hardware architecture gives the designer a new degree of flexibility to ensure an

optimized distribution of computing tasks on the processing cells and to fulfil constraints

such as on performance, power and area consumption.

Chapter 1. Introduction 5

1.2 The CIFAER project context

The automotive industry has observed a significant transitions from mechanical engi-

neering towards mechatronical products. The mechanical control is less present, being

replaced by electronic components called ECU (X-by-wire control). With respect to the

development of electronic domain, the evolution of electronic automotive industry has

recently released the appearance of a large number of ECUs in recent automobiles. As

presented in Fig. 1.1, since the 1950’s, the omnipresence of ECUs in vehicles has led

the industry to face a great challenge in term of increasing requirements about com-

plexity, functionality, performance, communication and safety. The ECUs themselves as

well as their communication buses require security for passenger safety. The automotive

electronic systems demand the more and more computation capacity as well as reliability.

Figure 1.1: Trends in automotive electronics industry (data provided by TRW Auto-
motive [2])

In recent years, the application of wireless and information technology products such

as rear seat entertainment, digital satellite radio and navigation systems have presented

the potential for significant new growth opportunities in the automotive entertainment

domain.

Chapter 1. Introduction 6

In various application domains emerging requirements leads to the definition of new

architectures for electronic embedded systems, both for software and hardware parts.

For example, in the automotive context, investigated solutions correspond to network

of processing elements, distributed in the vehicle. Notably, these substructures should

support multimedia applications, still delivering working fail safe and fault tolerance (for

example, driving assistance using GPS or image processing, etc.). Besides, considering

the economical context, interoperable and easily updatable solutions should be proposed.

One potential solution corresponds to the use of networks made of adaptable communi-

cation schemes, where each processing node could be reconfigured according to system

behaviour. Thus, such targeted reconfigurable architectures should make possible to

optimize processing execution and then match to functional requirements. System reli-

ability and fault tolerance should also be improved by defining an efficient management

able to modify and adapt the network property during system execution.

The research activity envisaged within the CIFAER project (Communication Intra-

véhicule Flexible et Architecture Embarquée Reconfigurable) [5] (Fig. 1.2) concentrates

on the definition of an architecture built around a processing unit supporting DPR

(generic processor associated with a reconfigurable area) and supporting flexible com-

munication interfaces. This flexible network will be based on radio frequency (RF) or

power line communication (PLC) [6] technologies. This architecture will play the role

of a processing node used for the flexible, tailored network to meet the constraints of

bandwidth and dependability according to different working scenarios.

!"

#$%&'()"*&+,-./(0&1"(1+",23-&)(0&1"

456"

457"

8$-0*,+.("

#33-.9(0&1"

:,9&1;<$)(=-,"

>?@"

:,9&1;<$)(=-,"

>?@"

:,9&1;<$)(=-,

>?@"

A&B"?&1%)&-"(1+"),9&1;<$)(0&1"*(1(<,*,1%"

" " " " " " " C)(1'*.''.&1"9D(11,-"

45E"

Figure 1.2: CIFAER project organization

Chapter 1. Introduction 7

The construction of a reconfigurable ECUs needs to exploit some of the benefits of

PLC or RF communication. Indeed, these connections will allow to add, at low cost,

functionalities in the vehicle or may carry data previously confined to a single ECU in

the vehicle. The reconfiguration aspect would then have three major objectives:

1. support these new communications channels;

2. support the update of new features in the vehicle;

3. ensure the dependability by accessing data of a faulty ECU, for example.

The work of this thesis fits into the context of the CIFAER project. The project aim is to

provide a flexible network of communication to consider the task migration. Critical tasks

need to be maintained by migrating them from defected ECU to fault-free one. We focus

initially on multimedia network (infotainment) of the vehicle, and thus the dependability

aspects mainly concern aspects of "qualities of service" or "denial of service". We will

not deal for the moment with safety aspects. In a second step, the study of an ADAS

application will require methodologies and dependability to support more advanced level

of reliability.

1.3 Objectives

In this thesis, our contribution is to propose and realize fault-tolerance services to the

automotive system using dynamic partial reconfiguration. We propose to demonstrate

the relevance of new dynamically reconfigurable technologies in the automotive elec-

tronic systems and more generally in the dependability domain. The use of dynamically

reconfigurable computing has a double-objective:

1. reducing the number of ECUs thus reducing development costs and providing some

hardware redundancy as well as a unified implementation for all tasks, whether critical or

not. The occupation rate of the equipment is improved by the reutilization of processing

elements during their idle periods;

2. supporting effectively classical and industrial approaches for dependability aspect.

By performing a failure detection using reconfigurable computing and the coupling to

a migration of tasks (hardware and software), it is possible to significantly increase the

Chapter 1. Introduction 8

robustness of the system, while maintaining optimized performance. We will use in this

work the fault detection, fault correction and recovery mechanisms.

The first difficulty comes from the study of the hardware architecture of reconfigurable

ECU compatible with the cost constraints, as well as the constraints of algorithm com-

plexities and real-time. A complex problem is the interface between the computer and

the vehicle when migrating tasks following the failure detection.

Finally, the management of the security operation will be optimized by reusing the

hardware. For non-critical or complex medium, a time division multiplexing equipment

will optimize the utilization of computers.

Based on the developed hardware architecture and its control software, a demonstrator

performing the dynamic partial reconfiguration, as well as the services managing the

fault-tolerance strategies, was realized during the thesis.

1.4 Contributions and content

In general, the fault-tolerance mechanisms require hardware overhead for implementing

redundancies, which limit the number of processing elements deployed, and hence limit

the system capacity. So the challenges spring from the application of fault-tolerance

techniques that reduces the computational power of target system. During the thesis, we

have managed to exploit the dynamic partial reconfiguration in order to prpose efficient

and non intrusive fault tolerance scheme. The dynamic partial reconfiguration, on the

one hand, helps improve the system reliability and amend the performance by reducing

the negative impact of fault-tolerance, on the other hands enhance the flexibility by

including the change on-demand capacity.

FT-DyMPSoC is a system that coordinates all the features of a dynamic MPSoC and

also integrates fault-tolerance schemes to deal with potential errors. In our system, the

fault detection is carried out at various levels: at processor level a lockstep scheme is

implemented, while at system level we use the connection matrix approach. About the

fault correction, all the processors inside FT-DyMPSoC are implemented in dynamically

reconfigurable zones, and any processor can be reconfigured by another one in case of

detected errors. This feature fulfills the drawback of state-of-the-art MPSoC systems

Chapter 1. Introduction 9

which usually contain a static processor as a master processor in charge of reconfiguring

the others. Another challenge comes from the system building-up. Because the whole

processor including the processor core as well as its peripherals needs to be reconfig-

ured to deal with errors. Nevertheless this feature is restricted if the standard design

flow is applied. We then introduce a modification of the design flow which eases the

creation of fully dynamic processors. The modified flow necessitates the definitions of

wrappers and sockets concepts. The support of these components (wrappers and sockets)

alleviates complicated processes while constructing complex systems as all the structure

complexities are managed by the design tools.

It is necessary to include fault-tolerance schemes to prevent electronic systems from

being defective during life-time. However penalties always accompany fault-tolerance

techniques, an achievement in reliability implies a lost in system performance. There

lacks an effective method to estimate the impacts of fault mitigation schemes on the

system performance. Thus, an analytical model is proposed in Chapter 4 to help ease

the evaluation of performance/reliability trade-off while including fault-tolerance tech-

nique into the target systems. Then our FT-DyMPSoC is introduced into the model to

evaluate the impact of fault-tolerance on the system performance. Additionally, one of

the most popular state-of-the-art fault-tolerance technique for FPGAs—scrubbing [7] is

also applied in the model for comparison. The obtained results demonstrate the better

performance/reliability trade-off of our FT-DyMPSoC than scrubbing. Furthermore, the

model is not only restricted to system using FPGAs, as the model has a wide applicabil-

ity on various fault-tolerant system using different architectures by defining appopriate

parameters. Also in this chapter, a simulation and verification model for fault-tolerant

systems proposed. This model helps to quickly validate complex systems including fault-

tolerant feature. The simulation models allow for first, quickly verifying the e?ectiveness

of the fault-tolerance schemes applied in the system, secondly speeding-up the period

of user-application design and debug. Implementation and analysis results are given to

demonstrate the interest of this simulation/verification model.

Duplex system is more appreciated than a triple redundancy system in term of required

hardware overhead. On the contrary, duplex system lacks the fault identification lo-

calization, and hence correction capabilities which are present in triplication system.

Ameliorating existing fault-tolerant schemes based on duplication using dynamically re-

configurable architectures is presented in Chapter 5. In this chapter, our fault-tolerant

Chapter 1. Introduction 10

low overhead softcore processor system based on lockstep scheme is proposed and real-

ized. The lockstep system contains a duplex copy of processor which is able to detect

error in the dual processor thanks to a mismatch indicator. Our proposal enhance the

lockstep scheme by adding the fault identification capability. A proposed configuration

engine supervises the system in back-ground. The fault localization action detects which

processor within the duplex copy is defected by error. The proposed COMP_MUX

(Comparator/Multiplexer) contains a standard comparator that detects any inconsis-

tency between the two identical processors, then the fault localization operation of the

configuration engine is launched beyond the fault detection (reported by the compara-

tor). Afterwards the correct output of the fault-free processor is instantly switched to the

final output by the multiplexer. That prevents the erroneous results from being intro-

duced to the environment and thus avoids any potential catastrophic results propagation.

The operation disruption due to fault occurrence is minimized offering a big advantage

to the system safety. Moreover the generality of configuration engine and COMP/MUX

concepts do not prevent them from being implemented in diverse types of systems. It is

enough to implement the target module in duplex, then add the configuration engine and

the COMP/MUX into the system. The big hardware overhead of triplication is relieved

while still providing the fault identification capacity.

Chapter 2

Background and Related Works

2.1 Reconfigurable architecture

2.1.1 Introduction

Fine-grained reconfigurable devices allow for fast functionality modification at a low

level of granularity. For example, the device can be modified such as to add or remove

a single inverter or a single logic gate. Fine-grained reconfigurable devices are mostly

represented by complex programmable logic devices (CPLD) and the field programmable

gate arrays (FPGA). Because of higher density integration of logic blocks in one device,

using FPGAs allow for building up high-performance system with low development cost,

short time-to-market and reprogrammability. Especially, FPGAs provide high flexibility

at both design-time and run-time.

Figure 2.1 provides a simplified structure of an FPGA. The basic architecture of FPGAs

consists of three kinds of components: logic blocks, routing, and input/output blocks.

Generally, FPGAs consist of an array of configurable logic blocks (CLBs) that can be

interconnected each other as well as to the programmable I/O blocks through some

sort of programmable routing architecture. FPGAs can be programmed (configured)

to realize the required functionality. The CLB is composed of Lookup Tables (LUTs),

multiplexers (MUXs), Flip-Flops and registers. The contents of CLBs are programmed

to control the functionality of the logic blocks, while the routing switches (switch boxes)

are programmed to realize the desired connections between the logic blocks.

11

Chapter 2. Background and Related Works 12

Programmable

Logic/Memory
Blocks

Programmable

Routing

Programmable

I/O Blocks

Figure 2.1: Generic FPGA architecture

There are different methods to store this program information, ranging from the volatile

SRAM method [8] to the antifuse technology [9]. The area of an FPGA is mainly due to

the programmable components. Hence, the programming technology can also affect the

area of the FPGA. Another factor that has to be considered is the number of times the

FPGA has to be programmed (configured). Antifuse-based FPGAs can be programmed

only once, while SRAM-based FPGAs have no limit to the number of times that the

array can be reprogrammed.

The configuration details of SRAM-based FPGA are stored in SRAM memory cells. The

lookup tables (LUT) used in the logic block are also stored in the SRAM cells. When the

interconnect network is implemented using pass-transistors, specific SRAM cells switch

the transistors on or off. This storage method is volatile and the configuration has to

be written into the FPGA each time on power-up. So for systems using SRAM-based

FPGAs, the configuration is usually fetched to an external non-volatile storage device.

The SRAM technology offers the convenience of reusing a single device for implementing

different applications by loading different configurations. This feature has made SRAM-

based FPGAs popular in reconfigurable platforms, which strive to obtain performance

gains by customizing the implementation of functions to the specific application. But

using this technology, each cell requires at least five transistors. Due to the relatively

large size of the memory cells, the area of the FPGA is dominated by the configuration

storage.

Chapter 2. Background and Related Works 13

With the low granularity of the function generators (LUT and MUX), FPGA allows for

programming any kind of function as far as this can fit onto the device. However, the pro-

grammable interconnections between the logic blocks reduce the performance of FPGAs.

To overcome this, one potential solution is to embed a frequently-used module as hard

macro in the device, as it is the case in hybrid FPGAs. Therefore, it allows programmable

interconnections only between processing elements available as hard macros on the chip.

Coarse-grained reconfigurable devices follow this approach. In general, those devices are

made upon a set of hard macros (8-bit, 16-bit or even a 32-bit ALU) carrying few op-

erations such as addition, subtraction or even multiplication. The interconnections are

realized either through switching matrices or dedicated buses. The configuration is done

by defining the operation mode of the hard macros and programming the interconnection

between the processing elements.

Large FPGA companies also provide many coarse-grained elements embedded in their

hybrid devices according to the market need. For instance, Xilinx embed in some Vir-

tex family hard-wired 32-bit RISC processor PowerPC [10] which can construct high-

performance embedded system combining with high flexible reconfigurable resources.

2.1.2 Reconfigurable processor

Modern FPGAs, besides customary high-density reconfigurable resources, offer the de-

signers the possibilities of implementing reconfigurable processors, having features of

Commercial Off-The-Shelf (COTS) components (no need to modify processor architec-

ture or application software). Processors are in charge of collecting the data from periph-

erals and from the memory, process the data and send them to the memory and to the

peripherals. Also, processors manage the memory and initialize the peripherals. Xilinx

FPGA devices include two categories of processors: the hardcore embedded processor

(PowerPC [10]) and softcore processors (MicroBlaze [11], PicoBlaze [12]). Altera also

provides two processor type: ARM-based hardcore processor (Excalibur) [13] and soft-

core processor (Nios) [14]. Hardcore embedded processors are hard-wired on the FPGA

die and their number is limited on each device (1, 2, 4 or no hardcore processor). On the

other hand, softcore processors use reconfigurable resources, so the number of processors

that can be actually implemented depends on the device size only.

Chapter 2. Background and Related Works 14

2.2 Dynamic reconfiguration

2.2.1 Definition

Currently, the main interest in the granularity of the FPGA programming data is re-

lated to the property provided by some recent FPGAs like Virtex families of Xilinx to

perform on-line programming (dynamic reconfiguration) of a portion of their logic (par-

tial reconfiguration). The system can change its behavior according to its environment

or external events during run time. Dynamic reconfiguration even permits a system to

change partially his logic resources without affecting the rest of the system. Among the

FPGA companies, Xilinx is known as the biggest one who offers the commercial Virtex

families with partial reconfiguration capability.

The behavior of the FPGAs is determined by a configuration bitstream that consists of

a sequence of commands and control signals bits data. The reconfiguration processes,

by downloading this sequence, program the FPGA to perform the design functions. The

reconfiguration process itself can be either done completely or partially depending on the

type of the bitstream to be downloaded. The design and its bitstream has a nonreciprocal

relation: it is not possible to extract the design structure and implementation on the

FPGA from the bitstream.

Modular or module-based reconfigurable system [15] is the system which has at least one

entire block is dynamically reconfigurable. In this kind of system, the FPGA fabric is

partitioned into one static logic and one or more partially reconfigurable regions (PRRs).

The static logic is part of the design which does not change and stay stable during all

the execution of a configuration. It can be operational, and include logic controlling

the reconfiguration process. PRR contain logic that can be partially reconfigured inde-

pendently of the static logic and other PRRs [16]. The resources occupied by the PRR

have to be more than the resources required for the related module. That makes the

occupation rates of the PRRs are inferior to 100%. Each PRR has a related partial

bitstream and the reconfiguration process can be done by sending this partial bitstream

to the reconfiguration port—Internal Configuration Access Port (ICAP) [3]. And the

size of the bitstream depends on the area of the PRR.

Chapter 2. Background and Related Works 15

In one PRR, several PRM (Partially Reconfigurable Module) could be loaded (one at a

time). Each PRM is designed and implemented individually using the partial reconfig-

uration design flow [16]. All PRMs for a given PRR must be pin compatible with each

other, i.e., have the same port definitions and entity names.

The creation of PRRs must satisfy place and route constraints of reconfigurable resources.

One of these constraints is the reconfiguration granularity of each FPGA decided by the

smallest amount of data that can be reconfigured—a reconfiguration frame. To partially

reconfigure the FPGA-logic at run-time, an entire reconfiguration frame must be rewrit-

ten to the configuration memory for the smallest change. The reconfiguration of the

whole frame that does not disturb other frame is called configuration scrub, which is

sometimes referred as frame-based reconfiguration (differ with module-based reconfigu-

ration).

Virtex architectures have configuration memory arranged in frames that are tiled across

the device. These frames are the smallest addressable segments of the device configura-

tion memory space that physically correspond to base regions in the device matrix. The

dimension of base regions varies on different devices.

• Base regions in Virtex-6 are 40 CLBs high by 1 CLB wide [17].

• Base regions in Virtex-5 are 20 CLBs high by 1 CLB wide [3].

• Base regions in Virtex-4 are 16 CLBs high by 1 CLB wide [18].

Two PRRs must not overlap vertically inside one base region. However, since recent

FPGAs (Virtex-4, 5 and 6) can have multiple base regions along one device column, two

PRRs may overlap vertically in the FPGA as long as they do not share any base region.

Another important notion in designing a dynamically reconfigurable system is Bus Macro

[16]. Bus Macros are physic ports which connect PRMs to the static logic. Any connec-

tion between a PRM and the static logic must pass through Bus Macros. Furthermore,

Bus Macros serving as outputs from the PRM should be disabled prior to the partial

reconfiguration as these signals can toggle unpredictably during the reconfiguration pro-

cess, hence affect other logics. Therefore, enable control signal for Bus Macros outputs

is provided. The Bus Macros should be disabled by de-asserting enable signal prior to

Chapter 2. Background and Related Works 16

reconfiguration process, and then re-enabled after the last bit of the partial bitstream is

loaded.

!"#$%&&#"'

!#(%"!)*+,$"#-./0%'
!"#1"/2'

+%2#"3'

!%",45%"/.&'

!6-'-7&'

8)9!'

9::%;'

+%2#"3'<!=9'

>%$#:?17"/@#:'

-,A&A"%/2&'

B/A/'

8:&A"7$@#:'

FSL

!>>'

!>+C'
D

E

Figure 2.2: Microprocessor-based system controlling reconfigurable resources

Conventionally, in a dynamically self-reconfigurable system, there is a central processor

who connects to the reconfiguration port and controls the reconfiguration process by

sending partial bitstreams to this port. In the partial bitstreams, there is already all the

information concerning the reconfigurable zones. Figure 2.2 depicts a typical structure

of a processor-based system in one Xilinx Virtex device. The heart of the system is the

processor who reads the configuration bitstreams in the annex memory and controls the

reconfiguration process by sending partial bitstreams of different Partially Reconfigurable

Regions (PRRs) to the Internal Configuration Access Port (ICAP) [3]. The partial

bitstreams are stored in the annex memory that can be external like the Compact Flash

or internal like the BRAM. The software program of the central processor resides in the

program memory and drives the reconfiguration via the ICAP controller. The processor

is usually considered in the static logic to dynamically control the other reconfigurable

resources.

2.2.2 Design flow

Standard design flow for modular reconfiguration using Xilinx FPGAs is based on pro-

vided tools: Embedded Development Kit (EDK) [19], Integrated Software Environment

(ISE) [20] and PlanAhead [21] as shown on Figure 2.3. As stated before, the self run-time

reconfiguration of a FPGA is usually driven by a reconfigurable processor on the same

device as shown on Fig. 2.2. So the design flow of a reconfigurable system is as follow.

Chapter 2. Background and Related Works 17

!"#$

%&'()*$+)',-.$

/%!$

/.()-01()+$%23410)$

!.5,02.*).($

671.89)1+$

:10+;%23$

<1==,.-$

"24.721+$

")',-.$2>$(9)$:10+410)$

%(0?@(?0)'$1.+$%23410)$

%2?0@)'$

!A=20($2>$(9)$!*B)++)+$

602@)''20$:10+410)$671C20*$

DE)(7,'(;F:"GH")'@0,=I2.J$

K7220=71.$2>$(9)$+&.1*,@$

=10I17$0)@2.L-?01B7)$'&'()*$

<1==,.-$2>$(9)$910+410)$1.+$

'23410)$=10('$

M9)$B,('(0)1*'$D>?77N$=10I17J$>20$

+24.721+,.-$(2$K6O8$

P$

Q$

R$

S$

T$

hardware

s
o
ft
w
a
re

Figure 2.3: Standard design flow for dynamically reconfigurable system

First, the whole embedded system of Fig. 2.2 including hardware structures (Processor,

ICAP controller,...) and processor software sources are constructed using EDK. Then

the hardware parts are synthesized using ISE. The floorplan stage is managed by using

PlanAhead. During this stage, the PRRs are physically constrained on the FPGA matrix

and the Bus Macros are also fixed at the boundary of the PRRs. Afterwards, the floor-

planed hardware parts are combines with the software part to form a complete system

including full and partial bitstream ready for download to FPGA. The main interest of

the design flow concerns auto-insertion of Bus Macros into the initial design. With the

old design flow relating to the version 8.2 and 9.2 of Xilinx tools (ISE, EDK, PlanA-

head), the designer must manually add the Bus Macros into the design at the first stage

of the design flow. With the new design flow of Xilinx tools version 12, Bus Macros are

automatically added and placed at the stage 3 without the need of manual intervention.

Field Programmable Gate Arrays (FPGAs) are very popular for design solutions because

of the high flexibility and reconfigurability feature, which reduces the time to market.

They are also an attractive candidate for space applications in terms of high density,

high performance, low NRE (Non-Recurring Engineering) cost and fast turnaround time.

SRAM-based FPGAs can offer an additional benefit for remote missions. For instance, by

allowing in-orbit design changes thanks to reprogrammability, with the aim of reducing

the mission cost by correcting errors or improving system performance after launch. The

reliability and human safety constraints of certain critical domains require the fault-

tolerance schemes to be implemented in the system.

Chapter 2. Background and Related Works 18

2.3 Fault-tolerance in reconfigurable architectures

Fault-tolerance on semiconductor devices has been a meaningful matter since upsets

were first experienced in space applications several years ago. Since then, the interest in

studying fault-tolerant techniques in order to keep integrated circuits (ICs) operational

in such hostile environment has increased, driven by all possible applications of radiation

tolerant circuits, such as space missions, satellites, high energy physics experiments and

others [22]. Similarly, in automotive domain, the electromagnetic environment around

the vehicle can vary really fast over time by passing across various sorts of objects:

other vehicles, electric panels, traffic lights. Working in that harsh environment requires

critical electronic circuits to ensure highly reliable operation for driver and pedestrian

safety. Automotive systems include a large variety of analog and digital components

that are potentially sensitive to radiation and must be protected or at least qualified for

correct operation.

The fault-tolerant techniques can be classified as 2 types: the ones that change the

technology of the fabrication process, and the ones that change the design structure

of a system. The first possibility is to design new FPGA matrix composed of fault-

tolerant elements. These new elements can replace the old ones in the same architecture

topology or a new architecture can be developed in order to improve robustness. The

cost of these two approaches is high and it can differ according to the development time,

number of engineers required to perform the task and the foundry technology used. Actel

offers the Radiation Tolerant FPGA families [23] in which flip-flops are protected by

Triple Modular Redundancy (TMR). Xilinx, besides the commercial families, also offers

military families that are radiation hardened. The latest family is Radiation-Hardened

Space-Grade Virtex-5QV [24] which is compatible with commercial Virtex-5 FPGAs.

The second possibility is to protect the high-level description of the module by using

some sort of redundancy, targeting the FPGA architecture. In this way, it is possible to

use a commercial FPGA part to implement the design and the SEU mitigation technique

is applied to the design description before being synthesized in the FPGA. The cost of

this approach is inferior to the previous one because in this case the user is responsible for

protecting his own design and it does not require new chip development and fabrication.

The user has the flexibility of choosing the fault-tolerant technique and consequently the

overheads in terms of area, performance and power dissipation.

Chapter 2. Background and Related Works 19

All of these two solutions have their own space in the market, as each application has

its own constraints. But because the semiconductor industry trends to reduce time-to-

market and low-cost production, the implementations based on high-level design seem

more interesting.

2.3.1 Fault models in reconfigurable architectures

The damage provoked by radiations may be classified in two principal categories:

• Single Event Effects (SEE) of which the classification is presented in Fig. 2.4

• Long terms cumulative degradation that may raise permanent faults

!""#
!$%&'(#")(%*#"+(,*-#

!".#
!$%&'(#")(%*#

./0%-$(%*#

!12#
!$%&'(#1$*#23-(*#

412#
45'63'(#1$*#23-(*#

!"78#
!$%&'(#")(%*#75%,69%#

8%*(//53*#

!":#
!$%&'(#")(%*#:0*,;<53#

!"=>?!"1#
!$%&'(#")(%*#

=0*(#>53*5/(?15/%95*#

!"2#
!$%&'(#")(%*#

23-(*#
!9@#"//9/#

A0/B#"//9/

!9@?A0/B#

"//9/#

Figure 2.4: SEE classification

With potentially serious consequences for the application, including information loss

and functional failure, Single Event Effect (SEE) is the major concern in mission-critical

applications. SEE occurs when charged particles hit the silicon transferring enough

energy in order to provoke a fault in the system. SEE can have a destructive or transient

effect, according to the amount of energy deposited by the charged particles and the

location of the strike in the device. The main consequences of the transient effect, also

called Single Event Upset (SEU), are bit flips in the memory elements. According to

the logic fan-out, SEE can also produce multiple transient current pulses at the output.

Consequently, SETs in the logic can also provoke multiple bit upsets (MBU) in the

memory elements.

Chapter 2. Background and Related Works 20

2.3.1.1 Single Event Effect

Single Event Upset SEU has been constantly magnified in the past years, caused by

the continuous technology evolution that has led to more and more complex architectures,

with a large integration of embedded memories, followed by an amazing scaling down

process of transistor dimensions following Moore’s Law [25]. Figure 2.5.a represents a

!"# !$#

%"# %$ #&#

'#!

"#

())#

())#

(%#

(%#

*++#

*,,#

!"# !$#

%"# %$ #&#

'#!

"#

())#

())#

(%#

(%#

*++#

*,,#

!"# !$#

%"# %$ #&#

'#"

!#

(%#

(%#

())#

())#

*++#

*,,#

(a) (b) (c)

Figure 2.5: SEU effect on the state of a memory cell

SRAM memory cell which has two stable states ’1’ and ’0’. In each state, two transistors

are ’ON’ and two others are ’OFF’. A bit-flip happens when an high-charged particle

provoke the inversion of the circuit transistor state. This phenomena is called Single

Event Upset (SEU) and is one major concern in integrated circuits. In SRAM-based

FPGAs, SEU can affect the configuration memory by flipping a bit and corrupting the

functionality of the target design. SEU can also attack the data path of the design that

modify the data to processed, so produce wrong values at the output.

Single Event Functional Interrupt The malfunction provoked by an SEU is clas-

sified as Single Event Functional Interrupt (SEFI). The SEFI is the first anomaly within

integrated circuits provoked by a bump of a single ion, similarly to the SEU, that in-

troduces a temporary malfunction or interruption of the device standard operations.

While the SEU is a phenomena that produces a temporary change of the device physi-

cal conditions, the SEFI is a phenomena that happens in the temporary change of the

implemented functionality and may remain until the power supply is interrupted. The

SEFI are observable in several devices, however until it is not related to a single cause,

this phenomena remains hardly definable [26].

Chapter 2. Background and Related Works 21

Single Event Latch-Up The ionizing radiations may provoke other kinds of effects

called Single Event Latch-up (SEL), that is produced activating the parasitic transistor

present between the junctions N-P of the CMOS transistors. The activation of such

kind of transistor create a low frequency path between the power supply (Vcc) and the

ground, crossed by an high current. If it is detected early enough after occurrence, it is

considered as soft error requiring reconfiguration or reset to correct. However, the SEL

effects are potentially destructive for an electronic circuit, hence it can become a hard

error.

Single Event Gate Rupture/Burnout Single Event Gate Rupture/Burnout refer

to destructive failures of transistors. An ion traverses the transistor structure, potentially

damages (increase gate leakage) or ruptures the gate oxide insulation. This phenomena

leads to device destruction if sufficient short-circuit energy is available.

2.3.1.2 Long terms cumulative degradation

The phenomena of the performance degradation of electronic circuit overtime is labelled

"aging" [27]. This cumulative degradation during long term could be induced by ra-

diation or by process variation [28] or both. The process variation may produce delay

and power leakage differences between transistors on the same circuit. The high-charged

radiation can provoke hot-carrier effect (HCE) [29] degrading the functional quality of

the transistor. All these delay and power variations due to process variation and HCE

may provoke permanent faults after a long-term operation, which cannot be eliminated

by reconfiguration.

2.3.2 SEU effects on configuration memory

The design functionality of FPGA is defined by configuration SRAM contents which are

stored in configuration memory cells. As shown on Fig. 2.6, these memory cells define the

states of LUTs, MUXs, Flip-Flop and switch boxes of the CLBs. The FPGA configuration

memory consists of these cells. When an error produced by an SEU occurring in the

configuration memory, it may modify the circuit functionality, e.g:

• Modify a LUT content: modify the combinatorial function

Chapter 2. Background and Related Works 22

!"#$ %%$
&$

&$ '()&$

&$

&$ &$ &$ &$

&$*+,-./012+,$&34+05$*366$

78"$

9':;$<:=>$

Figure 2.6: SEU effects on Configuration Memory of Xilinx Virtex

• Change I/O configuration: revert I/O direction

• Modify connecting matrices: cause an open connection or a short circuit

These functional modifications may cause the functional failure or loss of logical func-

tionality. Since the configuration memory upsets still remain latched, their effects are

permanent until the configuration memory is refreshed with correct configuration data.

Configuration upset classification In many cases, the functional errors that occur

after an SEU are temporary. Once the configuration fault has been repaired, there is no

sign of failure. In other cases, the functional output errors persist indefinitely beyond

repair. The concepts of persistence and non-persistence are based on this idea that, in a

system with configuration scrub, the duration of some functional errors is finite.

• non-sensitive bit: non-sensitive bits act as "don’t care" configuration bits for a de-

sign. A bit-flip in non-sensitive bits does not affect the functionality of that partic-

ular mapped design. Hence, the sensitivity of each configuration bit is application-

dependent.

• sensitive bit: Any bit-flips in sensitive bits will eventually affect the user-bits (sys-

tem state). Frames containing sensitive configuration bits are defined as sensitive

frames.

– non-persistent bit: The sensitive configuration bits provoke functional errors

which do not persist in a design and are flushed after configuration scrub.

Once the errors have flushed, the system exhibits no signs of failure. These

transient errors represent a temporary interruption of service that do not

require a reset to recover.

Chapter 2. Background and Related Works 23

Figure 2.7: Non-persistent upset

Fig. 2.7 illustrates the arithmetic difference between two data streams gener-

ated by identical designs. The figure depicts a non-persistent error. After the

upset reparation, there is no difference between the two streams.

– persistent bit: Sometimes an SEU-induced fault within the configuration

memory of an FPGA will introduce functional errors which indefinitely prop-

agate within a circuit, even after configuration scrub repairs the fault. Unlike

non-persistent errors, persistent errors do not disappear after configuration

scrub. Although configuration scrub repairs the circuit structure, the tem-

porary circuit failure inserts incorrect state into the system that cannot be

corrected, and will not self-correct without a global system reset. Persistent

functional errors react like a SEFI. However, persistent functional errors are

specific to the configuration programmed into the FPGA, not to the specific

device. In addition, persistent errors can be removed with a global system

reset while a SEFI usually requires a system power off/on to recover [30].

Persistent errors are caused by an SEU within the configuration memory cor-

responding to circuit structures that contain feedback and store internal state.

The feedback structures "trap" the incorrect state and store this erroneous

state until appropriate reset measures are taken.

Fig. 2.8 illustrates a persistent error, or permanent service interruption. Even

the configuration scrub repairs the upset, the output difference still persists.

Chapter 2. Background and Related Works 24

Figure 2.8: Persistent upset

2.4 Classical fault mitigation schemes

Since upsets in electronic devices were first discovered, the interest in applying fault-

tolerance techniques to ensure the operation of target devices in harsh environment has

increased. Besides hardening in fabrication process, the electronic designers have also

applied classical approaches at different level to keep the circuit operational.

2.4.1 Architectural level

At architectural level, the popular approaches of fault detection and tolerance approaches

are based on the redundancy. These approaches do not require any modification in the

internal structure of the target block.

2.4.1.1 Hardware redundancy

Using the hardware redundancy, the target blocks are replicated so that the system could

monitor its functioning state itself. Generally, there are two approaches: Duplication

with Comparison (DWC) where the hardware resources are doubled and Triple Modular

Redundancy (TMR) where the hardware resources are triplicated.

In DWC (Fig. 2.9), the original module is replicated twice and the results produced

by the original and the replicated modules are compared to detect faults. However the

DWC scheme cannot identify the faulty module. DWC allows to tolerate temporary

faults, provided that it is supported by re-execution. Then, any disagreement between

the dual modules outputs triggers a few attempts to repeat the last operation hoping that

the error was due to temporary fault (in case of failure, a permanent fault is declared).

Chapter 2. Background and Related Works 25

!"#$%&'

()*+,$+)-".'

!"#$%/'

(0+**#*.'

1#0)-*-2#*'

3-2-'4,'

3-2-'562' 7**#*'

Figure 2.9: Duplication with comparison (DWC)

Lockstep scheme is the implementation of DWC at the processor level, supported by

some Xilinx FPGAs [31]. Two identical processors µP1 and µP2 receive the same inputs,

simultaneously execute the same instructions, and their results are compared step-by-

step at each clock cycle. µP2 generates the reference results to be compared against

those of µP1 that provides the system output. This system is able to detect but not

to correct error, because it cannot point out the faulty processor. In case of error, the

whole system need to be refreshed to recover correct functionalities of both processors.

One of state-of-the-art solutions in the automotive domain consists in implementing two

different processors in one ECU. In the SAPECS (Secured Architecture and Protocols

for Enhanced Car Safety) project [32], the main processing element is a 32-bit processor,

the second processor is 8-bit to reduce the hardware overhead since it is only for verifying

the main 32-bit one (Fig. 2.10).

Figure 2.10: SAPECS ECU with fault detection

Chapter 2. Background and Related Works 26

In the TMR scheme, it is possible to identify the error thanks to the resource triplication

and the majority voter (Fig. 2.11). If a module output differs from the two others,

this module is declared erroneous and the majority voter (Fig. 2.12) will choose the

correct value of the two other modules. The scheme protects both combinational and

sequential logic against temporary upsets. However, if an error occurs in the voter, the

TMR scheme may produce a wrong value in the output. To overcome this issue, Xilinx

proposes the XTMRTool.

!"#$%&'

()*#+,-.'

/#-0+'

1)-)'23'

1)-)'45-'

!"#$%6' !"#$%7'

Figure 2.11: Triple modular redundancy (TMR)

!"

#"

$

Figure 2.12: Majority voter and truth table

In the XTMR scheme (Fig. 2.13), the majority voter is triplicated and the minority

voters are also added to the system. Thanks to these minority voters, the output of

the block which behaves differently will be disconnected by the tri-state buffer (TBUF).

However, in the recent Xilinx FPGAs, TBUFs are used for connecting to the final I/O

pins of the FPGAs, one TBUF controls on I/O pint. So the outputs of TBUFs in XTMR

scheme must converge externally i.e., on the PCB trace.

It is difficult to implement this solution in large system due to limited number of TBUFs.

Furthermore, I/O pins are usually used for connecting to external controllers which

cannot be implemented on the FPGA.

Chapter 2. Background and Related Works 27

!"#$%&

'&

()*&

+#,-.&

(/0&

+#,-.&

!"#$%&

1&

()*&

+#,-.&

(/0&

+#,-.&

!"#$%&

2&

()*&

+#,-.&

(/0&

+#,-.&

)

!&

345&

TBUF

TBUF

TBUF

Figure 2.13: Xilinx TMR—XTMR scheme

2.4.1.2 Time redundancy

In time redundancy approaches, the register cells are doubled or tripled and the compu-

tation of a given signal is made at two or more different instants of time and a majority

voter selects the correct output of the registers [33]. This way, a SET with duration

smaller than the time delay between the loads of the redundant registers shall not affect

the system operation.

Figure 2.14: Time redundancy scheme for combinational logic

Techniques based on time redundancy are usually used to detect a transient effect (SET)

in the combinational logic, while hardware redundancy can help to identify an SEU in

the sequential logic. In [34], examples of the use of time and hardware redundancy for

SET detection is presented. In the case of time redundancy, the goal is to take advantage

of the characteristics of the transient pulse generated by the particle strike to compare

the output signals at two different moments. The output of the combinational logic is

latched at two different times, where the clock edge of the second latch is shifted by time

d. A comparator indicates a transient pulse occurrence (error detection). The scheme

is illustrated in Fig. 2.14. Nevertheless, the time redundancy approach does not have

Chapter 2. Background and Related Works 28

much use in FPGA since the faults in the reconfigurable resources become SEFIs which

are permanent unless reconfiguration or reset is applied.

2.4.1.3 Error-correcting code

Error-correcting code (ECC) technique [35] is also used to mitigate SEU in integrated

circuits. It is usually used in memory. There are many codes to be used to protect the

systems against single and multiple SEUs. An example of ECC is the hamming code

[36] in its simplest version. It is an error-detecting and error correcting binary code that

can detect all single- and double-bit errors and correct all single-bit errors (Single Error

Correction-Double Error Detection (SEC-DED)). This coding method is recommended

for systems with low probabilities of multiple errors in a single data structure (e.g., only

a single bit error in a byte of data).

2.4.2 System level

When a design is highly modular, a fault can be tolerated by the use of a spare functional

block, providing degraded performance or by dispatching the failed task to other blocks

throughout the system. State-of-the-art solutions in automobile domains explore also

the fault-tolerance at system level. In the ReCoNets project [37] reconfigurable nodes

are connected together to form a network of reconfigurable computers. Procedures for

self-repair and intelligent partitioning were developed to achieve fault tolerance at system

level. In order to guarantee short repair times in case of node defects, the placement of

tasks is optimized and replicated nodes are created.

The ReCoNets demonstrator contains 4 FPGAs with 1 processor inside each FPGA. If

one FPGA is disconnected due to some failure, its tasks will be automatically distributed

onto the three others, and the system continue functioning. This system does not exploit

the DPR, so it require a high amount of memory to store all the bitstreams. Furthermore,

when there is a fault in one FPGA, the three others must be restarted to relocate the

tasks which potentially has a long period of function interruption.

Chapter 2. Background and Related Works 29

Figure 2.15: Multi-FPGA ReCoNets demonstrator

2.4.3 Context recovery strategies

2.4.3.1 Context introduction

In a fault-tolerant system, besides the fault detection and correction, it is necessary to

put the faulty module to the same correct state as before the fault occurs, especially

when full system or process restart may be unacceptable. So it is required to save the

correct context and restore it after the error is corrected. Then the module could resume

the execution at the saved point.

The context is a set of information needed to uniquely define the state of the module at

a given moment. It could include the states of all the related registers, the cache, the

memory, etc. of the module. Saving and restoring all relevant values allow for module

context switching and error recovery.

Processor context A processor context is contained in processor registers values.

The softcore processor MicroBlaze context is represented by the 32-bit values of 32

General Purpose Registers and two Special Registers: the Program Counter (PC) and

the Machine Status Register (MSR) [11].The values of these registers represent the state

of the processor.

There exists various context recovery techniques varying on the moment to save and

restore the context.

Chapter 2. Background and Related Works 30

2.4.3.2 Checkpointing and Rollback [1]

During task execution, the module is regularly checked for consistency at so-called check-

points. If the module passes the check, the correct context is saved at that checkpoint.

If fails, the module state is recovered from the correct state of the previous checkpoint.

The process of regularly check for consistency and correct context saving is called check-

pointing. The context recovery in this case is called rollback.

Program

Execution

Consistency

check

Checkpoint

Begin

Rollback

pass

fail

Figure 2.16: Rollback recovery using checkpointing

Rollback is usually used in duplex systems without the knowledge of the faulty module.

When an error occurs, the checkpoint comparison only detects the inconsistency between

the two modules. When no failure occurs in a checkpoint interval, no rollback is necessary.

Figure 2.17 depicts a scenario when a fault occurs between two checkpoints. It is not

possible to know which module is fault-free to copy its correct context so we cannot copy

the context from A to B or vice-versa. So the only option is to rollback both modules to

the previous checkpoint Fig. 2.17.

Figure 2.17: Rollback in duplex system

2.4.3.3 Rollforward [1]

On the other hand, in a system that is capable of localizing the error, rollforward can

be used. In Fig. 2.18, when an error is identified in module B, the modules A and C

Chapter 2. Background and Related Works 31

continue executing tasks. After the fault correction, the correct state can be copied to

module B from module A or C.

!"

#"

$"

t

Context copy

Figure 2.18: Rollforward scheme

Rollback can be used in a duplex system without error location capability and roll-

forward can be used for transient error recovery in TMR or in duplex with error location

detection. In most cases, rollback provides more timing overhead than rollforward be-

cause of required time of the regular checkpoints combining with rollback. These are not

necessary thanks to the knowledge of faulty module for the rollforward strategy.

2.5 Strategies for SEU

SEU is recognized as the main concern of the reliability problem in SRAM-based FPGAs.

Dynamic partial reconfiguration feature present in new reconfigurable architectures does

not only enhance the flexibility, but also can be used for ameliorating the fault-tolerance

degrees of the systems. So besides classical fault-tolerance solutions listed in Section

2.4, some particular techniques using dynamic reconfiguration dealing with SEU were

proposed. According to various SEU types in the configuration memory, the appropriate

strategy is selected to deal with each particular configuration SEU. So we first classify

configuration SEUs following their persistence behaviors (i.e. how the error affects other

configuration frames in the FPGA). Then we introduce the potential strategies dealing

with these configuration SEUs.

2.5.1 Readback

Readback [38] is a post-configuration read operation of the configuration memory. Once

the FPGA is programmed, readback allows for reading the FPGA’s programming data

and other information through the configuration interface. First, readback can be used to

Chapter 2. Background and Related Works 32

ensure that the current configuration data stored in the FPGA is correct. It provides the

ability to detect SEUs in the configuration memory without disrupting its operations.

Second, readback can be used to read the current state of all internal CLBs, connec-

tion and switch boxes for hardware debugging, functional verification of reconfigurable

computing applications. Since readback provides only the dectection capability, it must

cooperate with another correction technique.

2.5.2 Partial reconfiguration

The effect of configuration upset are permanent until the next configuration reload. It

could be achieved by global reconfiguration that reloads the configuration of the whole

device. This solution may produce a temporary service interruption of the whole system

which could be prohibited for some applications. Another solution is to use partial recon-

figuration to refresh only the related module without disrupting the rest of the circuit.

Obviously, less time consuming overhead is provided with the partial reconfiguration to

deal with upset removal.

Configuration scrub

If during readback, the current configuration data is found invalid, the upset should

be corrected as fast as possible to avoid any unpredicted result. Since a configuration

frame is the smallest reprogrammable segment, it is recommended to reload the whole

affected frame with the correct data using configuration scrub. Configuration scrub can

be combined with readback to define the bit-flip position and revert it, or the original

frame data can be stored in a highly reliable memory where the scrub controller can find

the configuration information.

Scrubbing

Upsets can accumulate in the matrix during a long period of time, provoking an error

in the system even when the redundancy is applied, it is necessary to clean up all the

upsets in such a frequency as to guarantee the correct functionality. The technique of

regularly reloading the configuration data with correct information is called scrubbing

[7]. Scrubbing is used to avoid the upset accumulation and scrubbing itself does not

Chapter 2. Background and Related Works 33

contain any detection mechanism. Scrubbing can be used alone to clean up the upsets

inside the matrix, if it periodically refresh the configuration memory. In this case, the

refresh frequency must be superior to the expected appearance rate of the upsets. A

throughout study on upset rates should be done before applying scrubbing, which requires

lots of investigations of the device manufacturing technology as well as the environment

condition. Consequently, that could significantly delay the time-to-market of the system.

Throughout this document, we differ configuration scrub as the operation of reloading or

modifying one configuration frame with scrubbing as the operation of reloading all the

configuration frames of the target system.

Module-based reconfiguration

Without identification of the exact faulty configuration frame, an entire defected module

need to be reconfigured with correct configuration data to eliminate the error This neces-

sitates the whole system to be designed using module-based partial reconfiguration. The

module-based reconfiguration using the design flow explained in Section 2.2.2. The par-

tial bitstreams of the reconfigurable modules are generated using this methodology. The

reconfiguration of one module is realized by loading the correspondent partial bitstream

using the reconfiguration port.

Tiling

The real permanent faults can appear in the matrix due to long-term accumulation or

faulty manufacturing process. This kind of fault may provoke multiple configuration

upsets and can be detected by using the combination of multiple strategies. However,

permanent fault cannot be removed using configuration data reload. A solution to per-

manent fault repair in fine-granularity FPGA is presented in [39]. A faulty module can

be repaired by reconfiguring the chip so that a damaged configurable logic block (CLB)

or routing resource is not used by the design. Many techniques have been presented to

provide permanent fault removal for FPGAs through reconfiguration. One solution is

to generate at run-time a new configuration after permanent faults are detected. This

solution is not feasible because of very complex logic synthesis, place and route strate-

gies which can only be implemented on external computers. Another one called Tiling

Chapter 2. Background and Related Works 34

is to generate pre-compiled alternative FPGA configurations and store the configuration

bitstreams in non-volatile memory. Fig. 2.19 describes the principe of Tiling. The same

design has three different configurations (a), (b) and (c) and each configuration has an

un-used zone (tile). If a permanent error is found in a tile, the appropriate configuration

which has the un-used tile covering the error, is loaded.

used

un-used

(a)

An un-used tile

(b)

Permanent error
in an used tile

(c)

Permanent error
in an un-used tile

Figure 2.19: Tiling principe

Tiling is one of most popular techniques to deal with permanent fault because when

permanent faults are detected, a new configuration can be chosen without the delay

of re-routing and re-mapping. However, this solution require high memory amount for

storing configurations.

The use of Tiling necessitates the application of a permanent fault localization mechanism

such as: readback repeatedly the same faulty frame, if the fault persists after continuous

correction, the permanent fault is declared and located by readback. Because of the

frame-based reconfiguration granularity, it is recommended that one tile should not be

smaller than one configuration frame.

2.5.3 Combined approaches

The combinations of several fault-tolerant approaches were exploited. The solutions from

[40–42] combine readback with configuration scrub. They have the ability to detect and

correct errors using low level approaches that detect undesired bit-flips in the configu-

ration memory. However, these systems are unable to distinguish whether the detected

errors really affect the design. Sometimes, the flipped bit does not belong to any design,

so correcting this error is pointless, because this non-sensitive bit does not really affect

the system functioning.

Chapter 2. Background and Related Works 35

CRC signature and resources triplication with majority voter are used in parallel in [43].

The CRC signatures generated correspondent to replicated modules, a vote is done based

on these signatures to detect the faults. The system can also be restored by copying the

configuration memory of the fault-free FPGA to the defected one. Actually, this solution

requires intrusive modification of the target design hence may affect the functionality.

Moreover, this solution can only work with multi-FPGA system and not be applied into

only one device because of the heterogeneity of the internal FPGA structure. Finally,

the multi-FPGA system implementing this solution must use the same FPGA device for

the entire platform also because of the heterogeneity of different FPGAs.

The method of dynamic partial reconfiguration synchronized with TMR presented in [44]

combines the dynamic partial reconfiguration with TMR. The method uses large grain

TMR with a special voter that can indicate the faulty module. The definition of check-

points allows the synchronization of modules. Using dynamic partial reconfiguration, a

faulty block is reconfigured and re-synchronization is made while the rest of the system

works. This technique makes it possible to reconfigure a block of the TMR on-the-fly, so

without loss of information. However, this method is not suitable for large system be-

cause of high hardware overhead of TMR. Moreover, big memory capacity is required for

saving context at checkpoints. The checkpoints need to be carefully analyzed to main-

tain the functional services. Finally, this kind of system does not have wide applicability

because it is adaptable only to Finite State Machine (FSM) where all the states are well

defined during design phases.

2.5.4 Fault-Injection

To estimate the dependability of a system, it is essential to evaluate the effectiveness of

fault mitigation schemes applied in the system. This involves the fault-injection exper-

iments for estimating the fault coverage parameter. Generally, there are many ways to

perform fault injection. A SEU in a memory cell can be modeled as a bit-flip. It can

be easily injected in memory elements described in hardware description language, such

as VHDL or Verilog, by performing a XOR operation between the original stored value

and a mask, which defines the bit to be flipped [45]. With SRAM-based FPGAs, the

bit-flip can occur in any bit of the bitstream, as a result, it is natural to perform the fault

injection directly in the FPGA bitstream without understanding the signals design and

Chapter 2. Background and Related Works 36

topology in the hardware description. The bitstream can be directly modified using any

text editor on PC. This modification does not require the design structure understanding

but the bitstream structure of related device in order that the modified bits are included

in the data not the command parts. The JBits Software Development Kit (SDK) [46]

is a set of Java classes which provide an Application Program Interface (API) into the

Xilinx Virtex-II FPGA family bitstream. This interface operates on either bitstreams

generated by Xilinx design tools, or on bitstreams readback from actual hardware. This

provides the capability of designing, adjusting and dynamically modifying circuits in

Virtex devices. The JBits API gives the user the ability to configure CLBs directly. By

using JBits classes, it is possible to perform a selective fault injection in the bitstream,

which can also reduce the time spent in fault injection. The bitstream manipulations

using either text editor or JBits SDK are offline method using external computers. On-

line method [47] an also be applied using available reconfigurable resources in the device

to perform dynamic reconfiguration. A dedicated controller built in the matrix does

the readback of the related frame, flip a bit inside the configuration frame data, then

write the error-injected frame to the matrix using configuration scrub process. Before

launching the next injection, the previous error should be removed to avoid the error ac-

cumulation. Error can be eliminated using configuration scrub again for non-persistent

error or module-based partial reconfiguration for persistent error. If the design is not

partitioned as module-based reconfigurable, the global reset must be applied to deal with

persistent error.

2.6 Summary and Conclusions

Due to their flexibility, FPGAs are attractive for mission-critical embedded applications,

but they are very susceptible to radiation and electromagnetic noise [48]. So their reli-

ability could be insufficient unless some fault-tolerance techniques capable of mitigating

soft errors are used. The major effects caused by them are known as Single-Event Up-

sets (SEU) or soft errors, because only some logic state(s) of memory element(s) are

changed but the device itself is rarely permanently damaged. In FPGAs, SEUs may

directly corrupt computation results or induce changes to configuration memory, that

can cause changes in the functionality and performance degradation of the device. There

are two ways to implement fault-tolerant circuits in SRAM-based FPGAs, as show in

Chapter 2. Background and Related Works 37

the flowchart of Fig. 2.20. The first possibility is to design a new FPGA matrix com-

posed of fault-tolerant elements. Certain FPGA companies offer also several radiation

tolerant families which have fault-tolerant elements. The fault-tolerance schemes rely

on redundancy but built inside the circuit and users do not need to manage that. This

approach requires lots of engineers and development time. Furthermore, these special

devices only have small markets like automobile and aerospace that is impossible to al-

low for big-volume production. Hence these particular FPGAs are usually much more

expensive than commercial devices.

SEU Hardened

SRAM-based
FPGA

Commercial

SRAM-based
FPGA

Replacing

elements in the
same architecture

topology

Developing a

new
architecture

topology

Full

hardware
redundancy

Combination

of hardware
and time

redundancy

Designing a new FPGA

matrix composed of
fault tolerant elements

by:

Protecting the circuit

description by
redundancy, targeting

the FPGA architecture.

How to implement a fault-tolerant digital circuit in

SRAM-based FPGA ?

For a given digital circuit described in a high-level

description language

A B C D

Figure 2.20: SEU and SET mitigation design flow

The second possibility is to use commercial FPGAs and apply high-level description

techniques of the design before this description is synthesized in the FPGA. The user

is responsible for hardening his design which do not require new chip fabrication. Fast

turnaround of both hardware and software updates are guaranteed by the manufacturers

during device life-time. Obsolete devices can be easily replaced by new ones thanks to

the backward compatibility and hence it could attract acceptance from users.

Certain modern FPGAs provide dynamic reconfiguration offering not only a higher degree

of flexibility, but also effective solutions for correcting SEU. Using dynamic reconfigura-

tion will allow for on-line error detection during system operation, very fast fault location,

Chapter 2. Background and Related Works 38

short correction, quick recovery from temporary failures, avoid long-period functional in-

terruption, fast permanent-fault repair through reconfiguration and also maintain the

service continuity which are crucial in highly reliable computing.

We propose, in the rest of the thesis document, our proposals combining various ap-

proaches with dynamic reconfiguration: effective fault detection, fast correction and

recovery from error. We target during the thesis the fault raised by SEU in the configu-

ration memory, in the reconfigurable elements and also single permanent faults. Through-

out studies of the proposals are also realized.

Chapter 3

Fault-tolerance in dynamic

multi-processor system-on-chip

3.1 Abstract

After studying state-of-the-art fault-tolerance solutions in reconfigurable architectures,

we found that the architectural and the system level fault tolerance techniques are more

interesting using available commercial FPGAs instead of directly using rad-hard FPGAs.

Currently, parallel computing is an important trend of embedded system. One possible

response to increasing requirements in computational power is to distribute tasks over

various processors and let these processors operate in parallel. Soft-core processors and

FPGAs require low Non-Recurring Engineering costs to develop such multi-processors

systems. Furthermore, certain FPGAs allow dynamic partial run-time reconfiguration,

but their high sensitivity to electronic defects can cause the system disfunction. This

chapter presents a fault-tolerant multi-processor system-on-chip (MPSoC) based on the

dynamic reconfiguration of the entire platform. We construct an MPSoC system that

combines the fault tolerance techniques at multiple levels: fault-tolerant dynamic MPSoC

(FT-DyMPSoC). Also, a modification of the standard methodology of the run-time self-

reconfiguration, who facilitates the complex modular concept design, is presented in this

chapter.

39

Chapter 3. FT-DyMPSoC 40

3.2 Introduction

To meet increasingly complex challenges, the requirements for computing power increases

very quickly. There are currently two main strategies to cope with this problem:

1. Operating frequency increase. This solution is significantly restricted by the fre-

quency limit and depends on the manufacturing technology. Furthermore, this

strategy is greedy in power consumption.

2. Using parallel processing. This technique increases the number of computing ele-

ments in the system. The mutiprocessor topology exploits this mechanism.

Contrary to the increase in frequency, in multiprocessor systems the number of processor

can grow depending only on the device size. Many multiprocessor topologies can be

implemented on an FPGA processors with soft-core available like Xilinx MicroBlaze,

or hard-core processors like PowerPC [10]. Additionally new FPGAs offer high density

resources for the integration of dedicated processing. There are two main paradigms of

communication to exchange data in such a multiprocessor system: message passing and

shared memory [49]. Each paradigm has its own pros and cons, but a multi-cluster (built

by message passing communications) is more suitable for reconfigurable architectures

[49]. This integration is facilitated by the existence and availability of point-to-point bus

IP.

Several state-of-the-art solutions combine the benefits of parallel processing and recon-

figurable architectures. However, none has implemented completely the dynamic partial

reconfiguration. The major problem of these solutions comes from the vulnerability of

certain parts of the circuit that are not integrated into reconfigurable areas. In [50], the

authors construct a fault-tolerant reconfigurable multi-processor. A task can be dynam-

ically mapped into the system without needing to restart the design process. However,

the platform is deployed onto multiple FPGAs and does not implement the dynamic

reconfiguration. In this system, each FPGA implements a processor. The equipment

cost is a major issue in this system. The behavior change of nodes (to reduce a system

failure) is obtained by reconfiguring totally the appropriate FPGA. This strategy thus

leads to long-time reconfiguration. In addition, this system requires a large memory to

store the complete bitstreams of all FPGAs for all task configurations. If two static tasks

Chapter 3. FT-DyMPSoC 41

are initially implemented on the FPGA and two tasks do not operate at the same time,

the target FPGA chosen must be big enough.

The RAMPSoC architecture [51] implements the dynamic reconfiguration in a MPSoC

system. The adaptation of the platform to the environment occurs at different levels.

At the processor level, the software elements are modified by replacing the program

within the processor memory. The process of dynamic reconfiguration is used for hard-

ware accelerators to optimize performance of the application. The dedicated hardware

components, such as the processor itself, the program memory and the memory con-

troller are defined at design time. A change in functionality of RAMPSoC is achieved by

reloading the program processors and dynamic reconfiguration of hardware accelerators.

This system contains a master processor in charge of reconfiguring other processors. In

fault-tolerance view, it is the main issue because if this processor fails, the whole system

will not work correctly.

There are other platforms exploiting dynamically reconfigurable multi-processor archi-

tecture [52, 53]. But these works consider only the accelerator processors, dedicated

hardware components of the processor cannot be changed dynamically. If errors occur

in these components, they cannot be removed using partial reconfiguration.

We will introduce in this chapter our fault-tolerant dynamic multi-processor system on

chip (FT-DyMPSoC). The system consists of several processors which are all dynamically

reconfigurable to: i) deal with errors occurring in the processors; ii) dynamically modify

the functionality of processor to adapt to various external events and constraints. The

FT-DyMPSoC system is built-up exploiting the modified methodology that will also be

presented in this chapter.

3.3 FT-DyMPSoC

The FT-DyMPSoC is constructed using dynamic partial reconfiguration of Xilinx Virtex

FPGAs. The standard design flow for partially reconfigurable system is described in

Section 2.2.2, p. 16. A typical partially reconfigurable system contains a processor who

reads the configuration bitstreams in the annex memory and controls the reconfiguration

process by sending partial bitstreams of different PRR to ICAP (Fig. 2.2, p. 16). This

processor is usually considered in the static logic to control dynamically reconfigurable

Chapter 3. FT-DyMPSoC 42

resources. It is a drawback because if this processor is faulty, the whole system will not be

able to continue operating. Our FT-DyMPSoC system eliminates this limitation. All the

processors in our system are dynamically reconfigurable and can reconfigure any other

processor. Each processor which consists of a MicroBlaze core, its program memory and

the controller as well as the processor peripherals, is wrapped in to one reconfigurable

module. In case of an error in one of these blocks, the processors are reconfigured to

correct the error.

The FT-DyMPSoC system (Fig. 3.1) consists of several softcore processors MicroBlaze

(µP1, µP2, µP3, etc.), a shared DDR2 SDRAM [54], an interrupt controller (INT)

and a non-volatile memory Compact Flash. The processors communicate between them

in a meshed topology using point-to-point Fast Simplex Links (FSL) [55]. The main

advantage of this system is that all the processors are dynamically reconfigurable. This

dynamically reconfigurable distributed MPSoC is able to handle the correct functionality

of given tasks as well as the possibility to introduce new tasks of the entire system. The

reconfiguration of a processor takes place when this processor fails or if we want to

migrate some tasks to this processor. The processor reconfiguration can either change

the program inside the MicroBlaze, or the hardware peripherals of MicroBlaze. It means

that the processor’s behavior can be changed at any time as long as the PRM’s interfaces

stay stable. If the reconfiguration of the processor 2 is required, the processor 1 will

access the ICAP and control the appropriate bitstreams and vice-versa. It is the same

mechanism with processor 3 and 4, which can reconfigure each other. Since there are only

two ICAPs in a Virtex 5 device (ICAP0 and ICAP1 in Fig. 3.1) and four processors are

capable of driving ICAPs, two controllers are required and instantiated in our design.

Each controller is in fact a 2-inputs multiplexer, whose inputs are two MicroBlaze’s

connections, and the controller’s output connects to ICAP. Therefore, the MicroBlaze 1

and MicroBlaze 2 can control ICAP0, and ICAP1 can be driven by MicroBlaze 3 and

MicroBlaze 4. These 2 ICAPs cannot operate simultaneously. Thanks to the controller,

we switch from one ICAP to the other by writing a configuration sequence using the

active ICAP and gives the reconfiguration control to the other ICAP.

The interrupt controller itself is dynamically reconfigurable module. The duration in-

terrupt strobes can be easily modified by reconfiguring the interrupt controller module

with a new duration.

Chapter 3. FT-DyMPSoC 43

!"#$!"%$!"&$!"'$

!!"#$%!"&'$()*+,)--.,$

()/012+$

3-145$

6(&78$

'9:$

6(&7;$

!"#$%&'

'9:$

6*+.,,<0+$

Bus Macro

Wrapper

Socket

Figure 3.1: FT-DyMPSoC structure

The bitstream stock in the system is also indispensable. We use the ML506 card [20]

which has a Virtex 5 XC5VSX50T device, and several on-board memory devices like a

non-volatile CompactFlash (CF) Card and a DDR2 SDRAM. While partially reconfigur-

ing the FPGA, each MicroBlaze needs to access partial bitstreams of the other processors,

who are often in the CompactFlash memory. Since only one MicroBlaze is connected to

the CF card (Fig. 3.1), there must be another shared memory to contain the partial

bitstreams. Due to the limited size of available BRAM in the FPGA, the DDR2 SDRAM

is selected.

In FT-DyMPSoC, the fault detection scheme is performed at two levels:

• Processor level: Each processor is hardened by lockstep mechanism of the processor

core [56]. The processor core is duplicated, the 2 cores receive the same inputs and

a comparator is added to report if there is a mismatch between outputs. This

mismatch takes place when an SEU affects the computation results.

• MPSoC level: At this level, the fault mitigation strategy is realized by synchro-

nizing among processors on exchanging detection frames via their communication

(Figure 3.3). While the processors execute their tasks (T1, T2, T3,...), the inter-

rupt (INT) drives all the processors into the interrupt routine to exchange detection

data, to build the connection statuses in form of a connection matrix and to share

all the matrices among processors. The connection matrices are deployed to in-

dicate if there are errors in the system. By varying the interrupt interval, the

Chapter 3. FT-DyMPSoC 44

system can auto-adapt to various constraints such as fault-tolerance constraints or

real-time constraints of related user-applications.

The fault-tolerance strategy combining the processor level (block level) technique with

MPSoC level (system level) scheme can provide a throughout fault diagnostic capability.

If an error takes place in the processor (reported by the comparator) or in the communi-

cation link (via the synchronization process), the partial reconfiguration of the defected

module will be launched to correct error. The error in one processor can be reported

immediately to the others, but for coherence purpose among processors, it is announced

at the synchronization phase. At the same time, the synchronization phase is able to

detect if there are errors in the communication links.

!" #"

$" %"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

!" #"

$" %"

&"""&!!!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""!"""!"""&"

&"""!"""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""&""!"""&"

!" #"

$" %"

!" #"

$" %"

"&"""&!!!"""!"

"!"""&"""!"""!"

"!"""!"""&"""!"

"!"""&""!"""&"

"&"""&""!"""!"

"&""&"""!"""&"

"!"""!"""&"""!"

"!"""&""!"""&"

&"""!"""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""!"""!"""&"

&"""&""!"""!"

!"""&"""!"""!"

!"""!"""&"""!"

!"""&""!"""&"

"#$! "%$!

"&$! "'$!

&"""&""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""&""!"""&"

&"""&""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""&""!"""&"

&"""&""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""&""!"""&"

&"""&""!"""!"

&""&"""!"""&"

!"""!"""&"""!"

!"""&""!"""&"

Figure 3.2: Connection matrices algorithm

The algorithm of connection matrices [50] used in the synchronization process allows for

the error detection in FT-DyMPSoC. The principe of connection matrices is explained

in Fig. 3.2. Each processor has its own connection matrix representing the connection

status of the network. Fig. 3.2(1) shows four fully connected matrices. Fig. 3.2(2) shows

the situation where two connections fail. Each processor detects the error and updates its

own matrix by changing 1 to 0. In the next step in Fig. 3.2(3), all the neighbor processors

are informed about the network topology change. To note that each processor store a

different matrix. Finally, the step in Fig. 3.2(4) achieves the same matrix in all the

processors. If all the connections of one processor fail, it is highly probable that it is the

processor which fails.

Chapter 3. FT-DyMPSoC 45

The Gantt diagram of this process for four processors is depicted in Fig. 3.3. At start-up,

the processor 1 copies the partial bitstreams from the CF Card to the DDR2 SDRAM

in order that all processors can access the data thanks to the DDR2 multi-port memory

controller (MPMC) [54]. Perodically the processors synchronize themselves via their FSL

connections. To avoid timing delay of the synchronization, we use a unified interruption

source for all the processors. The interrupt ticks are independent of the processor clocks

so even if the processors operate at different frequencies or use different operating systems

with other timing constraints, they can be synchronized.

!
"#

$%"#

Tint

$%&#

!
"# '()*+,

#

Error

-./0.12
#

!
&#

!
&#

Synchronization

$%3#
!
3#

!
3#

!
3#

Treconf

-./0.12
#

-./0.12
#

Context Save

Context Restore

$%4#
!
4#

!
4#

!
4#-./0.12

#

Tsync Tsave

Trestore

Figure 3.3: Timing diagram of FT-DyMPSoC

The synchronization processes are done regularly in the interrupt routines. Each inter-

rupt strobe (Tint in Fig. 3.3), the Interrupt Controller generates a signal in order that

all the processors enter the interrupt handler. In the handler, each processor sends to

the others its synchronization frames and receives frames from the others. If a processor

does not receive the frame from another for more than 100 execution cycles, that means

that connection is corrupted due to an error. Via the operational links, the connection

matrices are updated until they are identical in all the processors. If all the links of

one processor fail, this processor is faulty. The reconfiguration is realized in round-robin

order: µP1 reconfigures µP2 (Reconf phase in Fig. 3.3), µP2 reconfigures µP3, µP3

reconfigures µP4 and µP4 reconfigures µP1 The strobe length (Tint) is chosen at the de-

sign phase, but it can be modified by the reconfiguration to adapt to various application

scenario and different bitstream sizes. To do so, all the processors have to de-activate

theirs interrupt routines while one processor reconfigures the interrupt controller with a

new strobe period.

Chapter 3. FT-DyMPSoC 46

The status of the two ICAPs as well as the two multiplexers are synchronized thanks

to the same mechanism as the connection matrix. Which processor connects to which

ICAP, which ICAP is actually active, all this information are known and determined

through out the network during the synchronization phase.

Depending on the error type, different reconfiguration techniques are selected: normal

partial reconfiguration for a temporary fault or tiling technique [57, 58] for a permanent

fault. If the error persists after completing the fault correction process (i.e. for a tempo-

rary fault), the permanent fault is declared. The principle of tiling avoids usage of the

faulty zone of the FPGA by pre-compiling the same design with various configurations.

Each configuration has a blank zone and the permanent fault can be masked by charging

the appropriate configuration in which the blank zone overlaps the faulty area. Each

configuration of the same design has its own bitstream and the fault masking process

is done by downloading the appropriate bitstream through ICAP in a partial reconfig-

uration procedure. The bitstream generation for various configurations is done in our

system using a basic placement constraint PROHIBIT [59] which is assigned through the

user placement constraint file provided to the synthesis tool. The blank rectangle zone is

defined by the coordinates X and Y of two points A and B. By varying these coordinates,

the blank zone will be moved inside the PRR (Fig. 3.4).

A

B

PRR

Blank

Zone

PROHIBIT=XAYA : XBYB;

Figure 3.4: Tiling technique using PROHIBIT

Figure 3.5 illustrates the fault-tolerance flow chart of the FT-DyMPSoC system. Peri-

odically the processors synchronize to detect errors. If there is no error, the processor

contexts are saved into the DDR2 SDRAM (Checkpointing in Section 2.4.3.2 p. 30). If

an error is detected, the fault diagnosis is launched to identify if the error is permanent or

not. If it is a temporary error, the partial reconfiguration corrects it by downloading the

appropriate bitstream to the ICAP. If the permanent error is identified, tiling technique

Chapter 3. FT-DyMPSoC 47

is used to deal with this error. After that, the last saved processor context is restored to

resume the task in this processor (Roll-back).

Start Up

Task

Synchro-
nization

Error?

Save

Permanent?

Reconfiguration Tiling

Restore

No
Yes

No
Yes

Figure 3.5: Fault mitigation scheme

3.4 Design flow modification

However, the Xilinx PlanAhead tool does not allow to set a group of several IPs (who

are all subset of top level instance) as one reconfigurable module. Need-by, the design

flow needs to be modified to respond to the proposed system requirements.

To cope with the standard design flow drawback, we have exploited and modified this

flow. The modified design methodology is based on modular design concept which is pre-

sented in [16]. This feature allows designs to be splitted into portions that are indepen-

dently synthesized, coded, placed, routed, and mapped. The modification necessitates

the definition of the Socket and the Wrapper components.

Chapter 3. FT-DyMPSoC 48

3.4.1 Design flow modification

The first challenge springs from the structure of the MicroBlaze IP cores. The MicroB-

laze IP is reconfigured with its peripherals such as: BRAM program memory, BRAM

controller, PLB bus [20] and so on (Fig. 2.2). At this moment, all the IPs are "equal"

subset of top level instance (Fig. 3.6.a).

Top
–ICAP_Controller
–DDR2_Controller
–MicroBlaze_1
–Memory_Controller_1
–PLB_Bus_1
–MicroBlaze_2
–Memory_Controller_2
–............
–MicroBlaze_3
–............
–MicroBlaze_4
–............

(a) Original hierarchy

Top
–Bus Macros
–Static

–ICAP_Controller
–DDR2_Controller
–............

–Processor_1
–MicroBlaze_1
–Memory_Controller_1
–PLB_Bus_1
–PLB_Socket_1
–............

–Processor_2
–MicroBlaze_2
–............

–Processor_3
–MicroBlaze_3
–............

–Processor_4
–MicroBlaze_4
–............

(b) Modified hierarchy

Figure 3.6: Design hierarchy

But the Xilinx’s PlanAhead tool does not allow to set a group of several IPs (who are

all subset of top level instance) as one reconfigurable module. So the system hierarchy

needs to be modified as shown in Fig. 3.6(b).

At the first design phase (Fig. 3.7), a complete static design is constructed to verify the

operation of the whole system. The design procedure of this stage follows the standard

design flow for Xilinx devices (Section 2.2.2, p. 16). After validating the functionalities of

the shared DDR2 SDRAM controller, ICAP controllers and FSL connections, we have an

operational system who is still fully static. The design has all the functional blocks and

the required elements of the fully dynamic system that we want to construct afterwards.

The second design phase breaks the system into several sections consisting of all recon-

figurable parts and the static portion. Each module is coded, synthesized and mapped

following the standard Xilinx design flow (Phase III of Fig. 3.7).

Chapter 3. FT-DyMPSoC 49

!"#$ %&!$

'()*+,-).$

/)001*2$ "34*(3).$ %$

%%$

hardware

software

&567-8$"191613*$

!"#$

%&!$

/)001*2$

:";730

<-7(167$8-=2-$

!"#$

%&!$

/)001*2$

!"#$

%&!$

/)001*2$

*2>$ *2>$ *2>$

/)001*2$

'3=?3*$<$ '3=?3*$@$'3=?3*A

"34*(3).$

S
o
ft
w
a
re
 N

s
o
ft
w
a
re
 2

s
o
ft
w
a
re
 1

%%%$

%B$

B$

B%$

B%%$

!"#$

%&!$

/)001*2$

'3=?3*$<C$

Figure 3.7: Modified design flow for complex dynamically reconfigurable system

After the system fragmentation, some components, such as ICAP controller or DDR2

controller, are no longer connected to the PLB bus. Because these controllers are in the

static part, while the PLB buses are attached to their own MicroBlaze in the reconfig-

urable module. But the connections of PLB buses cannot be open, so we need to add

PLB_Socket presented below.

At the end of stage III, the netlists of all PRMs and the static logic are generated. Then

at stage IV, we instantiate these modules at top level by creating the module wrappers.

After the wrappers of four processors and the static part are realized, the Bus Macros

are instantiated in order to connect proper signals between system parts. Now the Top

level instance has five subsets: static part and four processors (Fig. 3.6.b). These subsets

are black boxes and their netlists will be invoked in PlanAhead (Stage V). At this stage,

the four processors can be set as reconfigurable modules. They can be floorplanned to

generate hardware bitstreams of the whole system. The step VI of the flow merge the

hardware parts with modified MicroBlaze programs to form the final bitstreams including

the initial full bitstream and all partial bitstreams.

Chapter 3. FT-DyMPSoC 50

The presence of static logic is also essential in the design. In the static region, the Bus

Macros are instantiated, but they are located in the PRRs at the place and route stage to

keep the interface logic unchanged during reconfiguration. The reconfiguration controller

is mapped in this region. The two multiplexers are instantiated in the static part of the

design.

3.4.2 Socket

The objective of building socket is to introduce the presence of peripherals who exist

in other subsystems. Since the DDR2 Controller, ICAP Controller (who connected to

PLB Bus [20]) and FSL Buses are shared among four processor subsystems, they must

be instantiated in another subsystem. So at the subsystem design phase, each processor

has no longer direct connections with these controllers. This generate hardware synthesis

errors because the connections of PLB and FSL bus must not be open. A socket is a

mask that has one end connected to the bus to conserve the connection, the other end is

open in order to be connected to Bus Macros afterwards. Hence, the socket is now a new

peripheral that helps filling up the complete component list of a processor. Especially for

the PLB bus, since it is a multi-slave bus, so there is an address translator implemented

in the socket so that the processor can communicate with the appropriate peripheral of

the PLB bus. Another role of sockets is to make a fake peripheral appear in the address

memory of the processor that helps the processor to drive the missing peripheral with

the software program. This requires a little modification in the program of the processor.

3.4.3 Wrapper

All the connection interfaces of each reconfigurable modules are declared in its wrapper,

so the wrappers of different PRMs for a PRR must be the same. A wrapper is in fact

a black-box written in HDL language and describes all the interface of a PRM with the

static logic. We have written four wrappers for the four processors respectively (dashed

rectangles in Fig. 3.1) in order that each processor can be designed independently using

standard design flow (Sec. Intro). A big advantage of using wrappers is that we do not

have to take care about the structure complexity of a reconfigurable module. All the

difficulties while building a complex module is managed by the Xilinx FPGA CAD tools,

we just need to keep the substitute PRM’s wrapper to be the same as the original one.

Chapter 3. FT-DyMPSoC 51

One advantage of this flow is the facility of the HDL wrappers creation for all the re-

configurable modules that eases the design of complex modular system. Only a little

modification of the wrappers is needed to adapt a substitute reconfigurable module to

the system. If we want to replace the portion N by the portion N’ (regardless of the

module complexity), we just need to keep the connection name unchanged in order that

its HDL wrapper is the same as the original one. All the structure complexity of the

module N’ is managed by the CAD tools.

3.5 FT-DyMPSoC amelioration

We have enriched our FT-DyMPSoC system using a NoC instead of point-to-point links.

The Reliable and Reconfigurable Dynamic Architecture (Re2DA) system uses a NoC-

based network called DRAFT (Dynamic Reconfigurable Adaptive Fat-Tree) [60]. The

fault-tolerance at multi-platform level has also been taken into concern providing a highly

reliable system based on FT-DyMPSoC. The multi-platform consists of several FPGAs

and each FPGA is an FT-DyMPSoC system. The fault-tolerance is managed at MPSoC

level as well as multi-platform level (Overall system level).

3.5.1 Re2DA system

Since the complexity of MPSoC systems continuously increase with the parallelism re-

quirements of the applications, interconnection becomes a concern leading to the use

on Networks on Chip (NoCs). NoCs, like Dynamic Reconfigurable Adaptive Fat-Tree

(DRAFT) [60], provide flexibility and scalability to the applications. However, shared

communication architecture directly impacts the fault tolerance capability of the system.

We hence use DRAFT as the central communication architecture among the processors in

an MPSoC system. Beside the user-application, DRAFT is also used for fault-tolerance

objective. The envisaged user-application is constituted of 4 automotive-aimed tasks

that have different security levels. The fault-tolerance mechanism guarantees the sys-

tem functionality depending on these security levels, the highest security task will be

managed first.

Currently, a lot of interconnection architectures were designed but their topologies can

be classified in a few basic families [61]. Main families are the bus-based architectures,

Chapter 3. FT-DyMPSoC 52

µP1

!"#$%&

'()*+,&-+-.*/&&

!!"0&'!"#1&

PRR 1 PRR 2

PRR 4 PRR 3

PRR 5

#2*3)4& 5)6+& 72,+.& #8,2.&

PRR 6

µP4

µP2

µP3

Re
2
DA

9:%&

Figure 3.8: Internal structure of Re2DA

the matrix-based structures like meshes and torus, the tree-based topologies like fat-

trees, the rings based ones, and finally the custom networks. However, the most popular

structures for an implementation into the framework of systems using dynamic reconfig-

uration are the bus-based, the meshes, and the fat-trees [62]. We use in this work the

DRAFT network [60] which is adapted from a fat-tree based structure and was designed

especially to be implemented in system performing dynamic reconfigurations. Futher-

more, it provides best network performances while consumming less hardware resources

than other mesh or fat-tree based networks. Its performances in terms of latencies and

aggregative bandwidth are interesting for both the transmission of a video flow and the

transit of control words which are used for fault tolerance purpose. That is the reason

why the DRAFT network was choosen for our dynamically reconfigurable system.

The fault detection mechanism of this system is also based on the connection matrices.

However, the matrices are adapted to the DRAFT network. Using these modified matri-

ces, the system is capable of detecting errors whether in the processors, in the DRAFT or

in the connections of DRAFT. Once an error is detected, the dynamic reconfiguration of

the related module is launched to correct the error. If via the connection matrices using

DRAFT, one processor is reported to be disconnected from the other, it is possible that

the processor fails or the link is erroneous. In that case, the DDR is used to distinguish

the error. All the processors write a flag in their specific locations in the DDR and read

the flags of the others. If the flag of one processor is not found, this processor is faulty.

If the flag is successfully found, the processor is still working, so the correspondent link

fails.

The processors periodically synchronize themselves, share the connection matrices, and

Chapter 3. FT-DyMPSoC 53

save the processor contexts for error detection purpose during the saving phases (Check-

pointing). The contexts that relieve the state of the processors are regularly saved in

the DDR by the processors themselves. After the reconfiguration of a faulty processor,

the state of this processor needs to be recovered to the last saved state before the error

occurrence. So the last correct context will be flashed back to the processor just after

its reconfiguration (Rollback).

3.5.2 Multi-FPGA platform

!" #"

$" %"

$" !"

%" #"

%" $"

#" !"

#" %"

!" $"

&'()%"

+,-.*+" &'()"

/0+1+-*231"

4*5+"&'()"

/0+1+-*231"

#"

!"

6*1*-7*8"

$"

#"

%"

$"

!"

%"

&'()$"

&'()!" &'()#"

Figure 3.9: Fault-tolerant multi-FPGA platform

We have started to implement the fault-tolerance schemes at multi-FPGA level (Fig-

ure 3.9). The system consists of four FPGAs connected together using two Ethernet

communication (in future development one will be based on PLC interface, while the

other will be constructed on RF connections as studied in the CIFAER project [5]). The

first network is routed via a network switch, the other network form a ring topology for

the fault-tolerance purpose. The Ethernet protocol is built by Ethernet controller as

MicroBlaze hardware peripherals and LightWeight IP [63] as the software library. The

lwIP is an open-source stack using TCP/IP protocol, which can be easily adapted to

PLC and wireless modem. Each FPGA contains an FT-DyMPSoC system.

On the overall system, each FPGA is interfaced with a memory that can be accessed by

all the processors inside the same FPGA. This memory is partitioned into three segments

(Fig. 3.9):

Chapter 3. FT-DyMPSoC 54

• One for saving all the bitstreams and the software contexts of all the processors of

this particular FPGA.

• One for saving all the bitstreams of the next FPGA in the ring network.

• One reserved and used in case of failure occurrence in the system. This segment

helps to transfer the bitstreams and contexts between different FPGAs.

The memory segmentation guarantees the existence of at least one copy of all the bit-

streams over the whole network.

Figure 3.10: Fault recovery strategies.

As we can see in Fig. 3.10(a), the bitstream of each FPGA is present in its local memory

and also in the local memory of the previous FPGA in the ring topology. For example,

FPGA1 stores its own bitstream 1 and the bitstream 2, FPGA2 stores bitstream 2 and

bitstream 3 and so on. These copyies will be used in case of system failure, and permit

fast context switching.

The fault-tolerance degrees are maintained at two levels in the system. The Intra-FPGA

level corresponds to the fault-tolerance strategy inside each FPGA, and is related to the

design of the FT-DyMPSoC system. The fault-mitigation strategy is realized using the

connection matrices algorithm, and fault are mitigated by using dynamic reconfiguration

at the processors level. The second level called Inter-FPGA level corresponds to the

overall system presented in Fig. 3.9. To detect error in the overall network, all the

FPGAs exchange frequently among them detection frames. These frames contain the

software contexts of the four MicroBlazes of each FPGAs. On one hand, this helps

detecting error in the network. On the other hand, including the contexts within the

detection frame will help to resume the tasks of a faulty FPGA on another FPGA. During

the exchange if the contexts of one FPGA (i.e. FPGA3 in Fig. 3.10) are not received

by the others circuits, the FPGA3 is declared faulty. There are 2 possibilities: the

Chapter 3. FT-DyMPSoC 55

MicroBlaze 1 (supporting the interface to the network) of FPGA3 is faulty, causing the

communication lost of this FPGA, or the whole FPGA3 is faulty. In order to distinguish

these 2 possibilities, the secondary ethernet links is used. FPGA2 and FPGA4 try to

communicate with MicroBlaze 2 and 3 of FPGA3. If these communications fails, the

whole FPGA3 is declared defected, if not, only the MicroBlaze 1 is defected.

If only one MicroBlaze inside one FPGA fails, this error is managed thanks to dynamic

reconfiguration of this processor or by using task migration within the MPSoC system.

The error is managed at the FPGA level. If the whole FPGA fails the task migration

concerns the overall circuit. In this case, the tasks of the FPGA3 need to be dispatched

across the remaining circuits. If the system cannot manage all the tasks with one miss-

ing FPGA, task priority needs to be defined and used to maintain critical services for

example. In this case, arbitration on the running tasks needs to be executed, and recon-

figuration of the remaining FPGA is launched. If one FPGA is lost, we need to maintain

the two bitstreams copy stored in the faulty FPGA. For example, if the FPGA3 is lost

(Fig. 3.10), the copies of bitstream 3 and 4 are inaccessible requiring a clone of bitstream

3 and bitstream 4. We propose here 2 strategies delivering the bitstream 3 and 4 to other

FPGAs:

1. The first strategy uses only the secondary communication media. We need to use

FPGA1 reserved segment as intermediate medium. First the bitstream 4 is copied

from FPGA 4 to FPGA1 reserved segment, then to FPGA2. Afterwards, bitstream

3 is copied from FPGA2 to FPGA1, then to FPGA4.

2. The second strategy requires both communication media. Bitstream 4 is copied

from FPGA4 to FPGA1 using direct Ethernet link. Simultaneously, bitstream 3 is

copied from FPGA2 to FPGA4 using the primary Ethernet via the switch.

In case the Ethernet switch fails, all the primary Ethernet connections are defected;

this leads to a connection loss between all the FPGAs. At this moment all circuits

switch to the ring topology. The second network will then ensure proper operation of the

overall system. The use of redundancy of the network, coupled with the new dynamically

reconfigurable paradigm permits to construct highly reliable system.

Chapter 3. FT-DyMPSoC 56

3.6 Implementation details

We have implemented the FT-DyMPSoC system on the Virtex-5 XC5VSXT50T. An

applicative system is constructed with three dynamic MicroBlaze processors and two

audio filters also in dynamically reconfigurable zones. Three processors operating at

100MHz. The processor 1 connects to a camera, controls the video acquisition and then

displays it on a screen. This processor is used for ADAS (Advanced Driver Assistance

Systems) objectives such as collision avoidance, night vision or blind spot detection. The

processor 2 controls the audio configurations by choosing the appropriate filters (all-pass,

high-pass, low-pass or band-pass) and reconfigures them on-the-fly. The processor 3

controls the vehicle window pane by the user buttons and releases the airbag in case of

collision detection.

The implementation view of the system is displayed in Figure 3.11. The largest compo-

nent is the DDR2 SDRAM controller because it carries out big tasks such as for saving

processor contexts, for buffering video frames and for the reconfiguration processes. This

controller is static and manages 512 MBytes of DDR2 SDRAM.

Figure 3.11: FPGA Editor view of implemented system with automotive applications

As shown in Table 3.1, the processor bitstream sizes are respectively 194, 177 and 158

KBytes for processor 1, 2 and 3. The different bitstream sizes of processors are due to

the different implemented functionalities, hence induce different hardware requirements

for each processor. With the same functionality, the bitstream size depends significantly

on the PRR size. The bitstream size does not depend on the PRR position in the FPGA

matrix. However, it depends on the number of affected clock regions (base regions), even

if the PRR size stays the same. To minimize the bitstream size of a given amount of

Chapter 3. FT-DyMPSoC 57

resources, it is necessary to span the PRR on the clock region boundaries, thus reduce

the reconfiguration frames to be reconfigured.

Table 3.1: System hardware resources

LUT FF Slice BRAM Bitstream Size
(KBytes)

XC5VSX50T 32640 32640 8160 132
Processor 1 3840 3840 960 16 194
Processor 2 3360 3360 840 16 177
Processor 3 2880 2880 720 16 158

Socket 8 8 2 0
Wrapper 0 0 0 0

A socket in FT-DyMPSoC requires only 8 LUTs because it only plays the role of connect-

ing elements, without realizing the computational functionalities. Moreover, awrapper

does not consume any resource since it is just a virtual component that helps easing the

design flow. Consequently, the proposed flow modification requires very few hardware

resources, but considerably accelerate the system construction phase.

Recall that the bitstreams need to be copied in the DDR2 so as to be accessed by all

processors. By varying the size of the PRRs, we get different bitstream sizes. We have

measured the reconfiguration duration from the CF (CF2ICAP in Table 3.2) with dif-

ferent sizes of bitstream, also the time to copy the bitstreams to the DDR2 (CF2DDR)

and the duration to reconfigure the system from the DDR2 (DDR2ICAP). The reconfig-

uration duration from the DDR2 is about 75 % faster than from the CF card. But the

procedures that copy the bitstream to the DDR2 and read from the DDR2 can increase

the fault probabilities during bitstream manipulations. To respond to this issue, the

error detection and correction codes (like parity, Hamming or CRC codes) can overcome

this issue. However, the overhead can raise the bitstream size so the needed time to copy

to and reconfigure from the DDR2 as well.

The required reconfiguration times using DDR2 memory for three processors are respec-

tively 99, 91 and 80 ms. So the interrupt interval is chosen at 100 ms that is superior

to the reconfiguration times of processors in order that the interrupt routine does not

disrupt the reconfiguration process. For other systems which have other fault-tolerance

or real-time constraint, FT-DyMPSoC can quickly adapt by reconfiguring dynamically

the interrupt controller with appropriate intervals.

Chapter 3. FT-DyMPSoC 58

Table 3.2: Bitstream manipulation time

Bitstream Size CF2ICAP CF2DDR DDR2ICAP
(KBytes) (ms) (ms) (ms)
158 326 281 80
177 360 310 91
194 414 357 99
214 448 386 109
253 529 456 129
384 797 692 196
560 1167 1009 286
796 1654 1434 407

The process copying bitstreams of all the processors is extremely long (281 + 310 + 357

= 948 ms), but this stage takes place only once when the system boots, afterwards the

processors reconfigure from the DDR2 with shorter required time. In case of error in one

processor, only 2 processors hang their tasks for nearly one interrupt interval to correct

the error, while the 2 other processors continue executing their tasks.

The time needed to save one MicroBlaze context to the DDR2 is 4,5 µs, and to restore

is 7,65 µs. So in correct function of the whole system, one checkpointing process needs

5,5 µs.

Figure 3.12: Synchronization duration

The synchronization routine in a system of 2 processors running at 100 MHz frequency

needs 85 µs (8492 cycles). With 3, 4, 5 and 6 processors, it takes 183 µs, 287 µs, 402

µs and 523 µs respectively (Fig. 3.12). Even the required synchronization time rises

considerably when the number of processors increases, the synchronization duration is

still significantly inferior to the interrupt interval (183 µs with 3 processors compared to

Chapter 3. FT-DyMPSoC 59

100 ms of the interrupt interval). This synchronization process plus the context recovery

process have not much timing contribution to the system.

In order to measure the execution times of different operation in the processors, a timer

[64] is added to the system. This timer is a hardware peripheral and controlled by the

processor 1. The number of clock cycles that is counted by the timer can be easily read

using the processor. Thus the measured time of the required operation is achieved by

starting and stopping the timer respectively, at the beginning and the end of the related

operation.

Table 3.3 compare our FT-DyMPSoC system with other fault-tolerance techniques for

reconfigurable architectures. We take the reference of the target systems with the same

functionalities as FT-DyMPSoC. The fault coverage evaluates the ratio of mitigated

faults. The continuity depicts the capability of resuming the task in progress at the

paused point due to fault occurrence. The last column represents the ability to deal with

permanent fault.

Table 3.3: Comparison of different fault-tolerance techniques

Hardware
resources

Fault
coverage Continuity Permanent

fault
scrubbing >1x <100% N.A. No
TMR >3x 100% +++ No
DWC >2x 100% - No

FT-DyMPSoC <1.6x ∼100% ++ Yes

Scrubbing requires obviously the less hardware resources because this technique necessi-

tates only a small controller executing the task of scrubbing.

Event FT-DyMPSoC uses lockstep mechanism with resource duplication for processors,

the areas using for processors are not duplicated because of higher utilization rate in

the PRR. Comparing to the proposal in [65] in which the processor is triplicated in the

MPSoC context, big hardware overhead could be an high bottleneck. Additionally, the

communication links between processors are not duplicated thanks to the connection

matrix algorithm. So, the hardware resources required for FT-DyMPSoC is 1.6 times

compared to a basic system.

The hardware redundancy techniques require significantly much hardware resources be-

cause of their triplication or duplication as well as the voter or comparator.

Chapter 3. FT-DyMPSoC 60

In term of fault coverage, the redundancy techniques provide the best results as the fault

is detected and corrected instantly. Our FT-DyMPSoC system offers a fault coverage

nearly 100% depending on the synchronization rate. Anyway FT-DyMPSoC offers better

fault coverage than scrubbing, since the synchronization rate is always superior than the

scrubbing rate.

It is difficult to identify the continuity of scrubbing. The TMR scheme evidently provides

the best continuity because the task can continue its execution in spite of the fault

occurrence. Whereas DWC scheme offers a low continuity since both the two modules

in the duplication needs to be refreshed to correct the error. FT-DyMPSoC provides a

good continuity with the rollback strategy applied in the system.

And finally, among these techniques, FT-DyMPSoC is the only system that can deal

with permanent faults thanks to the tiling (p. 33) implemented.

Re2DA system In this implementation, there are 4 MicroBlazes and a DRAFT that

operate at 100 MHz while the DDR2 operates at 200 MHz. The PRR containing DRAFT

takes 1920 LUTs of which needs 53 ms to be reconfigured while PRR for each processor

consumes 2240 LUTs (the reconfiguration time is 59 ms). In good condition that all the

4 processors and DRAFT function correctly, the synchronization process takes 1 µs to

finish. In case of error occurring either in the DRAFT or in a processor, the processor

task rupture duration is less than 60 ms which is acceptable for the application scenario.

Multi-FPGA platform A platform composed of three Virtex-5 XC5VSXT50T using

ethernet communication is implemented. Each FPGA contains an FT-DyMPSoC system

of 4 MicroBlazes. The MicroBlazes run at 100 MHz. The inter-FPGA communication is

done via the TCP/IP protocol of lwIP library controlled by a MicroBlaze in each FPGA.

The lwIP can operate in two modes: RAW mode and socket mode.

The RAW API provides a callback style interface to the application. Applications using

the RAW API register callback functions to be called on significant events like accept,

read or write. The socket mode provides a simple API that blocks on socket reads

and writes until they are complete. However, the socket API requires many pieces to

achieve this and this API contains significant overhead for all operations, so it is slow.

Chapter 3. FT-DyMPSoC 61

Although the RAW API is more complex than the SOCKET API, it provides much

higher throughput because it does not have a high overhead.

Table 3.4: Ethernet performance measurement

RAW Mode Socket Mode
RX TX RX TX

120 Mbps 104 Mbps 20 Mbps 31.2 Mbps

To help the platform exploration, performance measurements are applied in the multi-

FPGA platform in both two modes (Table 3.4). The receive and transmit throughput

using the RAW mode are much higher than the socket mode. The bitstream size of a

MicroBlaze is about 170 KBytes which needs 170KBytes×8bit
104Mbps×103

= 13 ms to transfer from

one FPGA to another one using the RAW mode.

32 KBytes software code of a MicroBlaze corresponds to a 5 Kbit bitstream. Recon-

figuring using this bitstream will only change the software running on the MicroBlaze

without affecting the hardware part. The software context of a MicroBlaze has the size

of 1 Kbits. So, if we want to resume a task of a MicroBlaze from an FPGA on another

FPGA, only the software bitstream (5 Kbits) and the software context (1 Kbits) needs

to be transfered via ethernet network which requires only 58 µs.

3.7 Conclusion

In this chapter, we have presented a fully dynamic multi-processor system in context of

dynamically reconfigurable architecture who can deal with the possible faults in the re-

configurable architecture with low timing overhead. We have also proposed and validated

a CAD extension for managing the reconfiguration of complex reconfigurable modules.

The methodology facilitates the creation of the reconfigurable module wrappers. We have

developed the bus sockets and also the ICAP controller.

An alternative version of FT-DyMPSoC using DRAFT—Re2DA is also presented in this

chapter. No more hardware overhead is required to maintain the fault tolerance technique

in the system. All the needed hardware resources are used for constructing basic dynamic

system. The fault tolerance schemes lead to a slight software overhead which have small

effects in the system function. Using DRAFT as a centralized interconnection guarantees

the system communication capacity, while contributing actively to the system services

Chapter 3. FT-DyMPSoC 62

continuity with low overheads and provide considerable flexibility and scalability for

future larger system.

The proposed multi-FPGA platform provides a high-performance, flexible solution. The

cross-level fault-tolerance strategy ensures the correct functioning of the entire platform

in spite of fault occurrence. This system exploiting the dynamic reconfiguration can ame-

liorate the ReCoNets system: lower hardware overhead, more flexible, shorter functional

interrupt, better service continuity.

Throughout the duration of the thesis, an ADAS application for automotive domain was

considered and realized in the MPSoC systems. Each processor carries out an automotive

task with a particular priority. The tasks are: airbag management, window pane control;

blind-spot detection; and infotainment missions (audio and video management). In case

of failure, the critical service should be maintained depending on the task priority; the

airbag management and window pane control should be prior to the others.

All proposed system topologies can auto-adapt to either various fault-tolerance con-

straints: different error rates, reliability requirements, etc. or many user-application

constraints by regulating the interrupt interval on-the-fly.

Chapter 4

Analytical Model

4.1 Abstract

Implementing dynamic multi-processor system-on-a-chip (MPSoC) using Commercial

Off-The-Shelf (COTS) partially reconfigurable architectures is one feasible solution to

respond to the computational power needs with low Non-Recurring Engineering costs

requirement. However, the high sensitivity of commercial FPGAs to electronic defects

urges system designers to include fault-tolerance schemes to prevent their architectures

from being defective during products life-time. This additional item can decrease the

system computing power. Therefore, the need of an analytical model to analysis the

effect of fault mitigation schemes to system performance is one urgent requirement when

building such fault-tolerant system. This chapter presents an analytical approach for

the fault-tolerant dynamic multiprocessor system-on-a-chip (FT-DyMPSoC) which is

able to resist to Single Event Upset—predominant fault in FPGAs. The analytical

model is introduced to assess the performance, the reliability and the trade-off of a fault-

tolerant MPSoC system. Also, some comparisons with classical fault-tolerance solutions

to enhance our solution advantages are given.

4.2 Introduction

The increasing needs of performance and scalability orient designers toward using com-

mercial reconfigurable architectures such as available commercial FPGAs. Furthermore,

63

Chapter 4. Analytical Model 64

applying dynamically reconfigurable architectures can provide a higher degree of flexi-

bility, scalability and simultaneously maintain the computing power.

However, deep sub-micron system-on-a-chip aggravates the reliability problem in which

Single Event Upsets (SEU) are one major source of concern. An SEU takes place when

the radiation causes a bit-flip in some latches (1 to 0 or vice versa). In the available

commercial FPGAs such as Virtex 5 Series, predominant fault source is SEU in config-

uration memory [66] that inverts one bit in the configuration memory, this undesired

modification may cause the dysfunction of the target design. These susceptibilities delay

their uses in consumer and industrial products (automotive, aerospace,...) unless they

apply fault-tolerance techniques to mitigate the error effects. There are various solutions

to mitigate, mask, detect and correct error like hardware redundancy (Duplication with

Comparison, Triple Modular Redundancy) [67], time redundacy or some configuration

memory techniques like readback [38], scrubbing or readback and partial reconfiguration

combination [40].

Nevertheless, the fault-tolerance itself on the one hand can increase the system reliability,

on the other hand can affect the overall system in term of hardware and timing/software

overhead. The hardware overhead may restrict the available resources for designing

user applications. Besides, the timing overhead limits the execution time for application

tasks because of executing fault-tolerance schemes, consequently affects the entire system

performance.

On designing a fault-tolerant system, the trade-off between performance and reliability

becomes a considerable factor. So the need of an analytic model to evaluate the effects

of fault-tolerance schemes on the system performance becomes important.

This chapter presents our analytical approach to evaluate the system performance and

reliability of our FT-DyMPSoC system that is able to deal with SEU by exploiting the

dynamic partial reconfiguration. The analytical model is also used to compare with the

classical scrubbing solution.

Chapter 4. Analytical Model 65

4.3 Analytical Model

4.3.1 General definitions

Definition 1. System availability is defined as:

Sys_Avail = {1−Xdetect −Xcorrect −Xrecover −Xcorrelation} (4.1)

The system availability Sys_Avail is the percentage of available system execution time

per total time. Xdetect, Xcorrect and Xrecover are process factors respectively representing

the percentage of time that have been spent for detecting, correcting and recovering

from errors. In a non-fault-tolerant system, the system availability is equal to 1 since all

the time is reserved for executing user-application tasks (Xdetect, Xcorrect and Xrecover

are equal to 0). Besides, there is sometimes a correlation factor (Xcorrelation) among

processing elements. The correlation is due to the fact that the detection, correction

or recovery processes in one module may affect other modules operations in the system,

hence that could affect the overall system availability.

Definition 2. System computation power is defined as:

Sys_Power = Sys_Avail(%)× Sys_Powernom (4.2)

where Sys_Powernom is the total nominal computation power that the system can

provide.

In a first approach, we consider that in an MPSoC system consisting of NUM processors,

the system power is the sum of all the processor computational powers:

Sys_Powermpsoc =

NUM∑
i=1

µP_Poweri

=

NUM∑
i=1

{µP_Availi × µP_Powernomi} (4.3)

Chapter 4. Analytical Model 66

where µP_Availi is the availability percentage of the processori and µP_Powernomi

is the nominal processor computational power of the processori, represented in MIPS/-

MOPS (Mega Instructions/Operations Per Second).

Definition 3. The MPSoC system reliability is the product of all the processor reliabilities:

Sys_Reliability =

NUM∏
i=1

Proc_Reliabilityi (4.4)

The processor reliability is calculated based on the fault tolerance precision of the pro-

cessor:

Proc_Reliabilityi = 1 − Proc_FT_prei, where Proc_FT_prei is the fault tolerance

precision inside the processori which represents the probability that the system can miss

an error occurrence in this processor. This precision depends on the fault probability in

the related processor and the detection interval.

Definition 4. The fault probability of a module is defined by the probable number of

fault occurrences in the module. So the Fault Probability within the processori is defined

as:

FPi (Fault/s) = FR (Fault/(s.Mb))× Sens_Biti (Mb) (4.5)

where FR is the nominal Failure Rate in time per Megabit of configuration bits. This

Failure Rate is device and environment dependent,

The fault probability of a processor is defined by probability of fault appearance per an

area unit during a time unit, multiplied by the sensitive bits of the processor.

Definition 5. Sens_Biti is the size representation of processori. It’s all the bits of which

any change will lead to a processori malfunction.

The actual dynamic reconfiguration design comes with the declaration of Partially Re-

configurable Region (PRR) [16]. In a dynamic zone (PRR), we put the whole processor

inside, which does not occupy all the reserved resources. As a consequence, the sensitive

bits of a dynamic processor is defined by the occupation ratio (% Occupation) of the

processor within the declared region, as follows:

Chapter 4. Analytical Model 67

Sens_bit = BS_size×% Occupation (4.6)

where the bitstream size BS_size of the dynamic processor is defined by the size occu-

pied by the PRR at design time.

Definition 6. Tdetect is the detection time interval.

fdetect =
1

Tdetect
is the frequency that the overall system hangs to check the statuses of

all components. After this process, the system level decision will be given according to

the error to maintain the functionalities.

tdetect is the duration of one system level detection process.

tcorrect is the duration for correcting one processor.

tsave and trestore is the duration for saving and restoring the context of one module, these

two recovery parameters are application dependent.

Definition 7. Ni is the number of detection processes that have taken place upon a fault

occurrence in the processori. Ni depends significantly on the Fault Probability in the

processori and the detection interval Tdetect.

These above definitions will be applied to our FT-DyMPSoC system using COTS FPGAs.

Nevertheless, these definitions have general applicability which is not only restricted to

FPGA.

4.3.2 Analytical model for FT-DyMPSoC

We evaluate the affectation of fault-tolerance scheme to the system performance and

reliability in our MPSoC system consisting of NUM processors. The system timing

diagram is shown in Fig. 3.3 (p. 45).

Tint: the interrupt tick, that is the detection interval Tdetect,

Tsync: the synchronization duration, is the detection duration tdetect,

Treconf : the reconfiguration times, corresponds to the correction duration tcorrect,

Tsave, Trestore: context saving and restoring durations.

Chapter 4. Analytical Model 68

The processori availability is calculated as follows:

µP_Availi =

Tint−Tsync−Tsave

Tint
(I)

Tint−Tsync−Treconf−Trestore
Tint

(II)
(4.7)

In Eq. 4.7, the case I represents the processor availability when there is no error. This

process, which has detection and context saving phases, takes place (Ni - 1) times. Ni

is the probable number of synchronization processes upon one fault occurrence (one

reconfiguration process), calculated by the probable time interval that a fault appears

(1
FPi

) divided by the interrupt interval (Tint):

Ni =
1

FPi

Tint
=

1

Tint × FPi
(4.8)

During (Ni-1) processes (normal operation without error), there is a fault occurrence

which corresponds to a reconfiguration process (Case II).

then:

µP_Availi =
Ni − 1

Ni
× Tint − Tsync − Tsave

Tint
+

1

Ni
×
Tint − Tsync − Treconf_i − Trestore

Tint

=
Tint − Tsync − Tsave

Tint
− 1

Ni
×
Treconf_i+Trestore-Tsave

Tint

=
Tint
Tint
− Tsync

Tint
− Tsave

Tint
− 1

Ni
×
Treconf_i+Trestore-Tsave

Tint

= 1− Tsync
Tint

− Tsave
Tint

− 1

Ni
× Trestore-Tsave

Tint
− 1

Ni
×
Treconf_i

Tint
(4.9)

where Tsync
Tint

is the detection factor (Xdetect),

1
Ni
× Treconf_i

Tint
is the correction factor (Xcorrect),

and Tsave
Tint

+ 1
Ni
× Trestore-Tsave

Tint
is the recovery factor illustrating how the save and restore

processes affect the system performance (Xrecover).

Besides, it exists a correlation factor between processors (Xcorrelation). This factor is due

to the processori that will correct the fault occurring in the processori+1.

Chapter 4. Analytical Model 69

So Xcorrelation = 1
Ni+1

×
Treconfi+1

Tint

Finally, the processor availability is

µP_Availi = 1− Tsync
Tint

−
[
Tsave
Tint

+
1

Ni
× Trestore − Tsave

Tint

]
− 1

Ni
×
Treconfi
Tint

− 1

Ni+1
×
Treconfi+1

Tint
(4.10)

According to Eq. 4.3, we have the overall system performance:

Sys_Power=
NUM∑
i=1

{[
1− Tsync

Tint
− Tsave

Tint
− 1

Ni
× Trestore − Tsave

Tint

− 1

Ni
×
Treconfi
Tint

− 1

Ni+1
×
Treconfi+1

Tint

]
× µP_Powernomi

}
(4.11)

In a homogeneous MPSoC system, the nominal processor computational power is the

same so:

Sys_Power=
NUM∑
i=1

{
1-
Tsync
Tint

-
[
Tsave
Tint

+
1

Ni
× Trestore-Tsave

Tint

]

− 2

Ni
×
Treconfi
Tint

}
× µP_Powernom (4.12)

The processor fault tolerance precision is the probability that the system can miss a fault

inside a processor:

Proc_FT_prei = FPi(Fault/s)× Tint(s) (4.13)

hence the reliability inside a processor is:

Chapter 4. Analytical Model 70

Proc_Reliabilityi = 1− Proc_FT_prei

= 1− FPi × Tint

Following Eq. 4.8, we get:

Proc_Reliabilityi = 1− 1

Ni
(4.14)

The processor reliability is the probability that the processor executes its tasks success-

fully. Consequently, the system reliability is the product of all the processor reliabilities:

Sys_Reliability =
NUM∏
i=1

{1− FPi × Tint}

=

NUM∏
i=1

{1− 1

Ni
} (4.15)

The system reliability depends on the fault probability FPi in each reconfigurable com-

ponent which is constant in a specific environment and at the same time depends on

Tint-the synchronization rate. If we decrease this rate (prolong Tint), the system reliabil-

ity decreases (Equation 4.15), on the contrary, the system computational power increases

(Equation 4.12).

4.3.3 Model application for scrubbing

Scrubbing [7] is a classical solution that is widely used in industry for reconfigurable

architectures. This technique uses the reconfiguration scrub to periodically reload a con-

figuration frame at a chosen time interval. So in order to mask the possible errors, all the

configuration frames within the FPGA have to be reloaded that means reconfiguring the

whole FPGA but using partial reconfiguration of configuration frame one by one. The

reconfiguration frequency must be much more superior to the error rate. To recall that

reconfigurations scrub cannot deal with neither persistent error nor permanent upset.

To be sure that each module is refreshed correctly, all the frames of one module have

to be reloaded to return to the startup state and two different modules must not share

Chapter 4. Analytical Model 71

one configuration frame. So we choose the "modified" scrubbing scheme in which all the

modules (processors) are in dynamic zone that do not share any configuration frame.

Also, we can reconfigure the whole processor without interrupting the others. All the

dynamic processors are reconfigured at the frequency superior to the error rate of these

processors. After the reconfiguration, the processor returns to the startup state without

the need of saving and restoring the processor context. So as to be easily deployable and

able to compare with our method, we choose the modified scrubbing scheme. Instead of

partially reconfiguring the configuration frames one after another consecutively, all the

dynamic modules are reconfigured at the frequency superior to the error rate of these

modules. The duration for module-based reconfiguration of the processor is approxi-

mately equal to the duration of applying configuration scrub to all the frames of this

processor.

Applying the proposed analytical model to the scrubbing system, the reconfiguration

rate of processori is defined by factor ni - one configuration process is launched among

ni synchronization cycles. The availability of the processori is:

Proc_Avail∗i =
ni − 1

ni
+

1

ni
×
Tint − Treconfi − Treconfi+1

Tint

= 1− 1

ni
×
{
Treconfi
Tint

+
Treconfi+1

Tint

}
= 1− 1

ni
×
Treconfi
Tint

− 1

ni
×
Treconfi+1

Tint
(4.16)

with ni = 1
Rscrub

× 1
Tint×FPi

= 1
Rscrub

×Ni, where Rscrub is the scrubbing ratio:

Rscrub =
FScrub

Failure Rate , the scrubbing frequency is Rscrub times superior to the failure rate).

in the Eq. 4.16, 1
ni
× Treconfi

Tint
is the correction factor,

and there is no detection and recovery factors because we reconfigure regularly without

using the synchronization and context recovery processes (Tsync = Tsave = Trestore = 0).

Consequently, the computational power of scrubbing system is:

Sys_PowerScrub =
NUM∑
i=1

{
1− 2

ni
×
Treconfi
Tint

}
× µP_Powernom (4.17)

Chapter 4. Analytical Model 72

The fault tolerant precision of scrubbing within the processori:

FT_pre∗i =
ni
Ni

=
1

Rscrubi

(4.18)

Then the system reliability using scrubbing :

Sys_Reliabilityscrub =
NUM∏
i=1

{1− 1

Rscrubi

} (4.19)

The scrubbing system reliability is constant in a fault stationary environment and de-

pends only on the scrubbing rate that is Rscrub times faster than the probable error rate.

In order to maintain the scrubbing reliability, the error rate of the environment must be

thoroughly studied before.

4.4 Experimentation details and comparisons

4.4.1 Implementation

We only take into account errors in dynamic processors, not the filters since these tasks

are not very critical and they can be harden by classical hardware redundancy technique.

The DDR2 SDRAM is used for saving processor contexts, for buffering video frames and

for accelerating the reconfiguration processes.

The processor bitstream sizes with the occupation percentages and the required recon-

figuration times are shown in Table 4.1. So the interrupt interval is chosen at 100ms that

is superior to the reconfiguration times of processors in order that the interrupt routine

does not disrupt the reconfiguration process.

The three processors nearly have the same resource requirements but different sizes

of declared regions for the dynamic reconfiguration purpose. Consequently they have

different occupation rates (Table 4.1). If we calculate the occupation rate based on

SLICE (Virtex Configurable Logic Block - CLB) utilization, the sensitive percentage

must approximate this rate (Required SLICEs for processor upon available SLICEs of

Chapter 4. Analytical Model 73

the reserved region). Therefore, the calculated sensitive bits of the three processors (Eq.

4.6) are almost equal (about 134 KBytes), then the synchronization processes numbers

Ni are identical for all three processors.

Table 4.1: Experimental results

Bitstream Size Occup. Ratio TReconf

µP1 194(KBytes) 69% 99 ms
µP2 177(KBytes) 76% 91 ms
µP3 158(KBytes) 85% 80 ms

Based on [68], the Virtex 5 has a nominal Failure Rate of 151 FIT/Mb at 95% confidence

range. One FIT is one failure in 109 hours, then it comes:

Ni =
1

Tint × FPi
=

1

Tint × FR× Sens_Biti

=
1

100ms× 151FIT/Mb× 134KBytes

=
1

0.1s×151FIT/Mb
109×3600s

× 134KBytes
1024 × 8bits

= 2× 1014 (4.20)

The synchronization phase of 3 processors takes 200 µs (Tsync = 200 µs) (Fig. 3.12

p. 58). After each synchronization, the processor contexts are saved in a reserved

place in the SDRAM. The processor contexts are contained in 34 registers including 32

General-Purpose Registers and 2 Special-Purpose Registers (Program Counter Register

and Machine Status Register). The roles of these 34 registers are explained thoroughly

in [11]. Each register is 32-bit so the state of one processor is contained in about 1 Kbit

which needs 4.5 µs to be saved to and 7,65 µs to be restored from the SDRAM (Tsave =

4.5 µs, Trestore = 7.65 µs).

The nominal computational power of one MicroBlaze at 100MHz is about 120 Dhrystone

Mega Instructions Per Second (DMIPS) [11] (µP_Powernom=120 DMIPS), so maximum

performance of the system containing 3 processors Sys_Powernom = 360 DMIPS.

4.4.2 Comparison

Applying all above data to Equation 4.12 and Equation 4.15, we get the system availabil-

ity of 359 DMIPS (99.78% of 360 DMIPS) and the system reliability of (1−2×10−11)×

Chapter 4. Analytical Model 74

10
2

10
4

10
6

10
8

10
7

10
5

10
3

98

98.5

99

99.5

100

99.8

N
i

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

 (
%

)

Proposed Approach
F

scrub
 = 10*F

error

F
scrub

 = 100*F
error

Figure 4.1: System performance with three processors and Tint = 100ms

10
2

10
4

10
6

75

80

85

90

95

100

72.9

97

N
i

S
y
s
te

m
 R

e
lia

b
ili

ty
 (

%
)

Proposed Approach

F
scrub

 = 10*F
error

F
scrub

 = 100*F
error

Figure 4.2: System Reliability with three Processors and Tint = 100ms

100% at 95% confidence range.

Compared to the scrubbing system (Equation 4.17 and 4.19), the availabilities are 99.99999999%

and 99.9999999% of 360 DMIPS, the reliabilities are 72.9% and 97% (Figure 4.2), with

respectively the scrubbing rate 10 times (RScrub = 10) and 100 times (RScrub = 100)

superior to the error rate.

With our proposed approach, the system performance very slightly decreases 0.2% (359

comparing to 360 DMIPS) but the system reliability is significantly improved, our ap-

proach provides the reliability of 100% with precision of 10−11 comparing to two scrubbing

Chapter 4. Analytical Model 75

system: 72.9% with Rscrub = 10 and 97% with Rscrub = 100.

And since the Mean Time Between Failure (MTBF) of a Virtex-5 device is about dozens

of years [68]. So the time between two scrubbing operations could be years, months

or days. Scrubbing cannot be applied very regularly because of the non-capability of

detecting error and the long functional interruption due to long reconfiguration time.

Thus the reliability of systems using scrubbing is so low (72.9% or 97%). On the contrary,

applying the connection matrices algorithm, we got a better reliability. The connection

matrices exchange plays the role of the self-checking process in the processor network.

This process is much faster than the reconfiguration of scrubbing. And especially, thanks

to its short period, this exchange can be done regularly leading to a great improvement

of reliability.

Figure 4.1 and Figure 4.2 show the system performance and reliability comparison be-

tween the proposed approach and 2 scrubbing systems with scrubbing rates respectively

10 times and 100 times faster than the failure rate, in the variation of Ni that means

also the variation of fault probability (Equation 4.8). With Ni > 105 (or a Mean Time

Between Failure MTBF < 41 days), the system performance begins to be less than the

scrubbing system with Rscrub = 100, but the availability is always more than 99.75%,

while the system reliability really dominates the two scrubbing systems (Figure 4.2).

0 100 200 300 400 500 600 700
50

60

70

80

90

100
98

T
int

(ms)

(%
)

Performance
Reliability

Figure 4.3: Performance vs. reliability with Failure Rate=151 FIT

By knowing the Ni parameter using a counter triggered by the interrupt and stops

each time a reconfiguration is launched (a fault is detected), the failure rate of the

Chapter 4. Analytical Model 76

device in the environment can be easily deduced so that the system chooses the optimal

interrupt interval Tint for the specific system. Figure 4.3 shows the variation of system

performance and reliability in function of Tint variation. The value of Failure Rate is

constant at 151 FIT [68] (FPi = 44×10−11 (Fault/Second)). Applying to Equation 4.12

and Equation 4.15, the fault tolerance scheme almost achieves 100% reliability while the

system performance increases with the rise of interrupt time interval.

4.5 Conclusion

In a fault-tolerant MPSoC system, a trade-off always exists between performance and

reliability: performance gain is achieved in addition with a loss in reliability. This chapter

presents an analytic approach to evaluate the performance and reliability of fault-tolerant

MPSoC system. A trade-off between performance and reliability exists in a fault-tolerant

MPSoC system. The proposed analytical model affirms this statement. This model is

applied to our FT-DyMPSoC system and state-of-the-art approaches to enhance our

approach advantages: better performance/reliability trade-off, higher hardware resource

utilization. This model allows system designer to choose system specification according

to pre-design requirements. Furthermore, the model is not only limited to commercial

FPGAs, a wide applicability can be extended by feeding proper parameters to the model.

The validation of the proposed analytical model consists in the deliberate introduction of

faults into a system an effective fault-injection campaign should be realized. An effective

fault injection campaign allows for the dependability assessment of the system so helps

to evaluate the accuracy of the analytical model. For that purpose, a fault injection

engine is being taken into account.

Chapter 4. Analytical Model 77

4.6 Simulation and verification model for

fault-tolerant MPSoC

The inherent complexity is the development and validation of MPSoC systems with fault-

tolerance feature. This feature should be scheduled as early as possible in the design

flow. Designing and validating these complex systems in real hardware implementation

usually require lots of efforts and may delay the appearance of final product. Using

system-level modeling language to model such platform can quickly validate the concept

of fault-tolerance feature in complex systems at various levels of abstraction.

State-of-the-art research concerns modeling complex systems at high-level. The method-

ology in [69] presents modeling and simulation of MPSoC that includes dynamic recon-

figuration. This approach does not neither implement any fault-tolerance mechanism

nor consider the dynamic reconfiguration. In [70], a methodology is proposed that

performs design space exploration and models partially reconfigurable hardware using

TLM but without MPSoC and fault-tolerance modeling. Another methodology in [71]

supports multi-MicroBlaze system modeling using StepNP simulation and exploration

platform for system level architectural exploration. This approach does not implement

any dynamic reconfiguration or any fault-tolerance mechanism. In [72] a system-level

cycle-based framework called GRAPES has been proposed for the modeling and de-

signing heterogeneous MPSoC that allows structural and modular models to cope with

modeling, simulation and design challenges for MPSoC systems. It provides fast simu-

lation speed, while maintaining cycle level accuracy. This work also supports dynamic

reconfiguration but without fault-tolerance mechanism.

It is clear from the analysis of the existing models that neither implements any fault-

tolerant mechanisms. Thus a modeling methodology of a fault-tolerant MPSoC has been

proposed.

Fig. 4.4 shows the proposed model containing processor modules (µP), point-to-point

connections between processors based on FIFO channels, a shared memory (SM) and

a Fault-tolerant Engine. Each processor module which is not architectural dependent,

is dynamically reconfigurable and handles the execution of both normal task and fault-

tolerant task. Each processor has its respective local memory (LM) for storing its own

software context. The SM is used for storing bitstreams of the reconfigurable processors

Chapter 4. Analytical Model 78

!"#$!%&$
!"'$!%&$

!"($!%&$!")$$!%&$

$*+,-./$$$

&.01-2$

$3%&$$4+,55.6$

7,869:916.-,59$;5<=5.$

Reconfiguration

Controller

Interrupt

controller

Figure 4.4: Proposed model

that are pre-loaded as well as for containing the software contexts of all the processors

during execution. Multiple accesses to the SM are carried out via the TLM (Transaction-

Level Modeling) channel.

Fault-tolerant Engine consists of two blocks: a Interrupt Controller and a Reconfiguration

Controller. This engine has three intrinsic functionalities: fault detection, fault correction

and context recovery after fault elimination.

The concept of fault-tolerant mechanism is implemented in the interrupt routine driven

by the Interrupt Controller. All the processors are interrupted at the same time and

exchange connection matrices to determine the faulty processor or the defected link to

be reconfigured to eliminate the fault. The flow of this fault-tolerance mechanism is given

in Fig. 4.5. Faulty processor or link is detected and reconfigured within the interrupt

routine.

The execution model of a processor is illustrated in Fig. ??. The reconfiguration con-

troller is connected to all the processors and it does the reconfiguration of the faulty

processor. It is sensitive to the data received from the processor that initiates the recon-

figuration. The received reconfiguration data is analyzed to determine which processor

needs to be reconfigured. The execution of the faulty processor is halted and it waits

for the event generated by the reconfiguration controller once the reconfiguration has

been completed. It can be seen from Fig. 4.6, if bitstream PBS_M value is correct,

it means the processor is not faulty and it executes its task and interrupt routine as

usual. If the value has changed, it means the processor is faulty and it will wait for

the reconfiguration. After the reconfiguration, PBS_M is restored to the correct initial

Chapter 4. Analytical Model 79

 Start

Connection Matrix (CM) Generation

Exchange updated CMs where connection was not faulty

 Exchange CMs between Processors Modules through FIFO links

All CMs
Identical

Update its CM when nothing is received (that link or Processor module faulty)

Performing “AND” operation
of its CMx and the received CMy

NO

 Mutual Understanding (Rules defining one Processor responsible for reconfiguration)

Memory access by responsible Processor for reconfiguration data and
Handover data to the reconfiguration controller for reconfiguration

 Tasks context reloading onto the faulty Processor module

YES

 Exit

 Detect fault
In CM

Context saving

NO

YES

Figure 4.5: Fault-tolerance mechanism

value. Now, the processor will wait for the context to be reloaded from the SM that will

be used during the task execution.

Figure 4.6: Execution model

Chapter 4. Analytical Model 80

• When there is no fault, processor checks if any other processor needs context reload-

ing. If another processor is just reconfigured and needs context reloading, then the

processor reloads the context. It executes its task and the result of the task is sent

during the interrupt routine to all the other processors which store the result as

task context in their local memories.

• In case of fault, the processor is reconfigured, the context of the task is reloaded that

was previously saved in the SM when no fault occured and the task is re-executed.

4.6.1 Implementation

All the components are modeled in SystemC. The processor is implemented as a SystemC

module constructed with one SC_THREAD process that handles the execution of both

normal task and interrupt routine and would be able to access bitstream from memory

in case of fault. The SystemC sample code for the processor module is shown in Fig.

4.7(a) where execution_run implements the execution model of the processor.

(a) Processor (b) Shared Memory

Figure 4.7: Sample Codes

In the model, the shared memory (SM) is implemented as a SystemC module and holds

processor bitstreams. The sample SystemC for this memory is shown in Fig. 4.7(b).

Two target TLM sockets have been declared and they must be registered with the TLM

blocking interface. Memory implements the b_transport blocking interface.

Chapter 4. Analytical Model 81

The interrupt controller is a SystemC module modeled as a counter and sensitive to clock.

When the value of the counter reaches some predetermined value, an event (SystemC con-

struct) is notified which activates all the suspended processes in all the processor modules

executing their respective interrupt routines. The reconfiguration controller is a SystemC

module and performs reconfiguration of the faulty processor. It uses sc_method process

which is sensitive to the data received from the processor to initiate the reconfiguration.

4.6.2 Analysis

Concept verification of the fault-tolerance methodology is performed by introducing fault

in the processor module and later checked, if the system detects and corrects the fault

or not. The fault type was a change inside the representation bitstream of the related

processor model. From the analysis point of view, the interrupt interval has been varied

and the effect on performance and reliability has been observed. Three interrupt scenarios

have been taken i.e. 100 ms, 150 ms and 300 ms. The system with interrupt period of

100 ms is more reliable than the other two systems because the fault in the system is

detected and corrected earlier than the other two systems. The execution times of the

model have been measured 1000 consecutive times and the results have been attained by

taking the average of these samples.

• Interrupt routine takes 1595.6 µs when there is no fault in the system.

• Interrupt routine takes 2969.25 µs when there is fault in the system.

When fault arises, interrupt routine takes more time as time required to make their

connection matrix equivalent will increase and also it includes the reconfiguration time.

Increasing interrupt frequency will have a negative effect on system performance because

the interrupt routine will be invoked more frequently and consequently the time for

executing tasks will be less . This will be even worse in case of fault. There has to be

some trade off in the selection of interrupt ticks, so that reliability and performance are

not effected negatively. This depends on the critical application running on MPSoC.

Chapter 4. Analytical Model 82

4.6.3 Conclusions and Future Works

In this paper, a new model has been proposed that validates successfully the fault-

tolerance mechanisms through dynamic reconfiguration using SystemC. The proposed

facilitates the fast evaluation and verification of fault-tolerance feature in complex sys-

tem. This model has a lot of research potential from future point of view. The simple

processor model can be replaced by an Instruction Set Simulator (ISS) [73] to have more

timing accuracy. New techniques of fault tolerance can also be tested with this model

such as scrubbing [7]. Scalability of such model can be increased by replacing FIFO

with an efficient Network-on-Chip (NoC). A more sophisticated controller handling the

reconfiguration can also be tested.

Chapter 5

Low overhead fault-tolerant

reconfigurable softcore processor

5.1 Abstract

Modern FPGAs, like Xilinx Virtex-5, besides customary reconfigurable resources, offer

the designers programmable softcore processors having features of Commercial Off-The-

Shelf (COTS) components. Because these FPGAs are SRAM-based devices particularly

sensitive to radiation, their use in mission-critical embedded applications would not be

feasible due to insufficient reliability unless some fault-tolerance techniques capable of

mitigating radiation-induced temporary faults (soft errors) are used. In this chapter, we

consider the possibility of implementing techniques which would allow to tolerate tempo-

rary configuration faults of the softcore processors at low hardware and time overhead.

An enhanced lockstep scheme allows to detect and eliminate errors in real-time, without

interrupting the functioning of the system. The efficiency of the proposed approach was

validated through the fault-injection experiments.

5.2 Introduction

Modern FPGAs, besides customary reconfigurable resources, offer to the designers the

possibilities of implementing programmable processors offering features of Commercial

83

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 84

Off-The-Shelf (COTS) components (no need to modify processor architecture or applica-

tion software). Xilinx FPGA devices include two categories of processors: the hardcore

embedded processor (PowerPC) and softcore processors (MicroBlaze, PicoBlaze) [10].

Hardcore embedded processors are hard-wired on the FPGA die and their number is

limited on each device (1, 2, 4 or no hardcore processor). On the other hand, softcore

processors use reconfigurable resources, so the number that can be actually implemented

depends only on the device size and the configuration of softcore processors.

Remind that lockstep scheme is the implementation of DWC at the processor level (Sec-

tion 2.4.1.1). Two identical processors µP1 and µP2 receive the same inputs, simulta-

neously execute the same instructions, and their results are compared step-by-step at

each clock cycle (Fig. 5.1). µP2 generates the reference results to be compared against

those of µP1 that provides the system output. This system is able to detect error, but

it cannot point out the faulty processor. In case of error, the whole system need to be

refreshed to recover correct functionalities of both processors.

!"#$

%&'()*+$

,-(./0$

1./(./0$
230')/456$

!"7$

Figure 5.1: Basic lockstep scheme

Here, we are interested in designing and implementing a fault-tolerant softcore processor

using Virtex-5 FPGA. Only relatively few works can be found on FPGA implementations

of fault-tolerant softcore processors. In [31], a lockstep system using dual hardcore

processors PowerPC found in certain FPGAs is constructed. However, a limited number

of available PowerPC in FPGAs restricts their utilization to build e.g. a fault-tolerant

Multi-Processor System-on-Chip (MPSoC). Therefore one option to implement larger

number of lockstep modules in a single FPGA is to employ softcore processors that can

use available reconfigurable resources of the device.

In [56], the authors claim proposing a lockstep scheme using two hardcore PowerPC

processors embedded in Xilinx Virtex II Pro FPGA. However, this scheme is rather a

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 85

handshake scheme than a lockstep one, because the processors execute the same program

but not simultaneously and use checkpoints to verify the system consistency. As a result,

the time overhead is relatively large, because of the sequential execution of two identical

tasks on two different processors, which might be prohibitively long in some real-time

applications.

Because in the basic lockstep it is not possible to identify the faulty processor without

extra diagnosing support, the error recovery is achieved through reconfiguration of both

processor cores. However, this needs regular checkpointing for processor context saving

and rollback for context restoring to the last good processor state, which can be time-

consuming [56] (Fig. 5.2). Hence, it is worthwhile to consider the possibility of context

saving and restoring only in case of errors, although it could require some extra hardware.

Indeed, the TMR softcore processor architecture from [74] is able to correct single error

in a faulty module through rollforward error recovery. Although there is no need to

regularly save the context when no errors occur, it consumes over 200% of extra hardware

resources, which could preclude to build more powerful system like MPSoC. Also, the

major disadvantage of this scheme is the lack of autonomy, because it requires external

computer host to perform reconfiguration.

In this chapter, we propose a new architecture of a fault-tolerant reconfigurable system

which can be implemented on any FPGA with integrated softcore processors at a reduced

hardware and time cost. Our actual implementation on Xilinx Virtex-5 FPGA contains

an enhanced lockstep scheme built using a pair of MicroBlaze cores. The faulty core can

be identified by a fault-tolerant configuration engine (FT Configuration Engine) built

using PicoBlaze. Once the exact error location is determined by the Scan Motor and the

Bitstream Parser specially designed, the error is corrected through partial reconfiguration

(frame-based or module-based) combined with rollforward recovery technique. As a

result, there is no problem of fault latency, because faults are detected immediately once

!"#$%

&'% (#)*% (#)*% (#)*%

+,-.#/01%

(23%

4*0567% 4*-/58*%

T
CP

T
Save T

Restore

T
Reconf

Figure 5.2: Checkpointing and rollback for basic lockstep recovery

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 86

they cause an error, which is unlike in [56], where it exists a delay between two separate

executions in two different hardcore embedded processors.

5.3 New fault-tolerant architecture

The basic lockstep scheme is the realization of DWC at the processor level that can be

implemented using PowerPC processors available in certain Xilinx FPGAs [31]. Due to

very limited number of PowerPC processors available in one FPGA, it can be used to

build only systems with small number of processors. The basic lockstep scheme can be

implemented using softcore processor MicroBlaze to build MPSoC systems. Unfortu-

nately, it can only detect errors without indicating the faulty module. Our architecture

of the enhanced lockstep scheme (shown in Fig. 5.4) eliminates this limitation. It use a

special FT Configuration Engine and two Virtex-5 hardware primitives: the reconfigu-

ration port ICAP and the FRAME_ECC [3] to detect the faulty processor and then to

continue execution with the fault-free processor.

The architecture of the fault-tolerant system to be implemented is shown in Fig. 5.3. It

consists of two main blocks: the enhanced lockstep scheme and the fault-tolerant (FT)

Configuration Engine (CE), which uses ICAP and FRAME_ECC [3] as well as a highly

reliable external Golden Memory to store the configurations.

!"#$%

&'()%

*'+% *',%

-./'0/12%

-3% 4-)'%

&5)/303--%

6

.

7%

3%

5%

!"#$%!"#$%!"#$%

(89:;<%

/;=8>?%

Enhanced

Lockstep

Scheme

Fault-Tolerant

Configuration

Engine

-3%

-3%

Figure 5.3: Block scheme of the fault-tolerance architecture

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 87

5.3.1 Enhanced lockstep scheme

Two identical softcore processors MicroBlaze µP1 and µP2 are the heart of the enhanced

lockstep scheme. Each of them is dynamically reconfigurable and is a complex system

consisting of a 32-bit processor core, central bus and peripherals (Fig. 2.2 p. 16), designed

using the complex modular reconfiguration concept flow proposed in [75]. Their outputs

are identical during fault-free functioning, any disagreement indicating error(s). A total

of 200 bits of output signals of the PLB bus and the peripheral outputs are compared by

the Comparator/Multiplexer (COMP_MUX) which is also dynamically reconfigurable.

To note that each dynamically reconfigurable module should be fixed to a specific location

in a reconfigurable zone. Without this restriction, all the resources of the two cores might

be blended together and it could not be possible to distinguish the faulty module when

an error is detected. Also, the location fixation allows for reconfiguration of one of the

modules without interrupting the others.

!"#$%&%'"&()*+,$+-.-&(

!"/'-.'(

0-1"2-&3(

4+"15(

)
67#

%
'18

(

9:;(9:<(=%*+'>?"+-&%/'(

!"/@A*&%,"/(

B/A6/-(

!C):D)EF(

G/$*'(

C*';(C*'<(

C*'$*'(

40H)(

I
J
6'18

(

RB1

RB2

G!H:(

=0H)BDB!!(

Enhanced Lockstep Scheme

Figure 5.4: Enhanced lockstep scheme

Figure 5.4 describes more details our enhanced lockstep scheme. The COMP_MUX

component consists of three blocks. One is the Comparator that indicates any mismatch

between µP1 and µP2 for the PLB and final output signals. Another is the Multiplexer

which connects one of the processors to the system output. If one of them is reported to

be faulty, the Multiplexer will switch the other processor to the output. The switching

is an atomic operation executed in one clock cycle. Once the error is located by the FT

Configuration Engine presented in Section 5.3.2, the corresponding core is reconfigured to

eliminate its configuration error. Then, the two cores need to be synchronized to put the

newly reconfigured core to the same state as the correct one, so the two softcore processors

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 88

would be able to continue executing the same task in lockstep again. This is done by

the Context Recovery Block which handles the recovery process of the enhanced lockstep

scheme. The Context Recovery Block has a memory shared by both softcore processors

to store their context using on-chip BRAM that has dual-port connection providing

simultaneous access to two Recovery Buses RB1 and RB2. These buses serve to save

and restore the softcore processors context to the BRAM as well as to control the Context

Recovery Block during the context switching process. To note that the COMP_MUX

itself is also a dynamic module that can be reconfigured by the FT Configuration Engine

presented below in case of error on its logic.

In case of error affecting functional block, not the configuration memory of the enhanced

lockstep scheme, the FT Configuration Engine is not capable of detecting the faulty

module. In this circumstance, the COMP_MUX still reports an error. Our system

can not identify faulty core but the enhanced lockstep scheme can operate as a classical

lockstep scheme. The whole enhanced lockstep module consisting of the two processors

and the COMP_MUX needs to be reconfigured at the same time to remove the error.

5.3.2 Fault-tolerant configuration engine

Once a disagreement is detected by the Comparator, the task of localizing the faulty

softcore is executed by the Configuration Engine (CE) (Fig. 5.5) which consists of a Scan

Motor, a Bitstream Parser, and an 8-bit softcore processor PicoBlaze (chosen because of

its small size). Reliable uninterrupted operation of the Configuration Engine is crucial

for the correct functioning of the whole lockstep system. Because it is also exposed to

errors, to avoid a single point of failure, we made it fault-tolerant using TMR. Moreover,

if the FT Configuration Engine detects an error in one of its modules, the faulty module

will be disconnected. Then proper reconfiguration (frame-based or module-based) will be

launched to correct the error depending on the persistence of the erroneous bit. If the bit

is non-persistent, configuration scrub (frame-based reconfiguration) is launched, else the

FT Configuration Engine will reconfigure the defected module by transferring the correct

bitstream from the golden memory through the ICAP. This is achieved by implementing

each Configuration Engine in separate PRR withing the modular reconfigurable concept.

The hardware overhead of the TMR scheme in this case can be alleviated by the small

size of the Configuration Engine

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 89

!"#

$%&'()*+,# -!.$#
/0%1#/0%1#/0%1#

(%1213,*4#

$*32,3#

5&*6#

7'1'3#
89.7":"!!#

Figure 5.5: Configuration engine

5.3.2.1 Scan Motor

The Scan Motor continuously works in background to point out the physical position of

the error, hence, it does not affect the user design: it cyclically reads the configuration

frame by frame using readback through ICAP and checks all frames for errors. Every

configuration frame contains already built-in error correction code (ECC) bits. Any

change to the ECC bits caused by an SEU has no effect on the active design. During

readback, the FRAME_ECC primitive automatically computes the ECC bits based on

the readbacked configuration data and compares with built-in ECC bits. In case of

change in the configuration memory due to soft errors, the Scan Motor localizes it and

reports the erroneous Frame Addresses (FA) to the PicoBlaze, although it is not yet

able to identify the faulty module. The actual address of the erroneous frame of the

lockstep module is decoded by the Bitstream Parser. The reconfiguration of the faulty

block takes place by sending the appropriate configuration data to the ICAP, realized by

the Configuration Engine.

In a partially reconfigurable design, the reconfigurable modules are physically located

in specific regions (PRRs). Because we do not have available tools to extract the de-

sign directly from the bitstream, we have designed the Bitstream Parser component to

enumerate all the concerned frames within one dynamic module.

5.3.2.2 Bitstream Parser

A bitstream is a sequence of controls and data that determine the functionality of the

circuit by defining certain configuration frames. However, it is a one-way relation: defin-

ing the system functionality generates the bitstream file, but it is not possible to extract

the design from the bitstream. The full bitstream composition is described in [3]. For

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 90

Xilinx Virtex-5 FPGAs, some related parts of the partial bitstream resemble the full one,

shown in Fig. 5.6. Beside a number of instructions, the bitstream contains the config-

urations of all the frames concerning the well-defined zone which contains the module

function related to the bitstream. In the bitstream, all frames appear sequentially, each

one consists of a command Write words to Frame Address Register (FAR) (30002001)

followed by the FAR value.

Configuration Data
(HEX) Explanation

FFFFFFFF Dummy Word
20000000 No Operation

... ...
30002001 Write words to FAR
xxxxxxxx FAR Value 1
xxxxxxxx Data 1
30002001 Write words to FAR
xxxxxxxx FAR Value 2
xxxxxxxx Data 2

...
...

30002001 Write words to FAR
xxxxxxxx FAR Value n
xxxxxxxx Data n

...
...

20000000 No Operation
End

Figure 5.6: Bitstream composition (Table 6.15, p. 129 in [3])

The Bitstream Parser analyzes the pre-generated partial bitstreams and lists all the frame

addresses related to reconfigurable blocks of our architecture. Therefore, by parsing all

the partial bitstreams of these blocks, we can find all their frame address ranges. Because

each reconfigurable blocks has its own list of frames, if the erroneous frame is found on

the list, the error must be in the corresponding block.

With Xilinx synthesis tools, it is possible to analyze the bitstream to get address range

for each frame included. However, their use requires a lot of manual steps that can

only be done off-line at design time using dedicated tools on an external computer. The

proposed Bitstream Parser can be easily used either off-line by using external computer

or on-line by a processing element (which can be implemented on FPGA) using dedicated

reconfigurable resources. Once the Bitstream Parser is realized, it can be reused for all

other partial bitstreams without any modification. In the proposed system, the Bitstream

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 91

Parser is a software application program running once, at initialization time on the

PicoBlaze of the Configuration Engine.

5.4 Fault mitigation strategy

Start Up

Detect

Mismatch?

Fault
Localization

Switch

Configuration
Scrub

Persistent?

Modular
Reconfiguration

Permanent?

Tiling

Recovery
Task Interrupt

No
Yes

No
Yes

No
Yes

Figure 5.7: Fault mitigation strategy for the enhanced lockstep scheme

Figure 5.7 illustrates the fault mitigation strategy applied to deal with errors occurring in

the enhanced lockstep scheme. During system operation, the COMP_MUX continuously

supervises the dual-core lockstep module, while the FT Configuration Engine scans the

FPGA in background. If the COMP_MUX detects a mismatch between the two cores, a

fault causing an error can be either in one softcore processor or in the COMP_MUX itself.

The mismatch signal of the COMP_MUX is connected to the FT Configuration Engine

to launch the fault localization in the enhanced lockstep only. The FT Configuration

Engine starts to scan the COMP_MUX immediately and, if a fault is found, the FT

Configuration Engine will reconfigure it. If the COMP_MUX is fault-free, the error must

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 92

be due to a fault in one of the two cores, so the FT Configuration Engine only needs to

scan one core to identify the source of error. The COMP_MUX switch its output to the

correct processor output. The scan itself does not affect the core’s task, although during

this special scan, the enhanced lockstep needs to be paused to prevent any catastrophic

results.

Either the error is in the COMP_MUX or in a processor, a configuration scrub is first

launched by the Configuration Engine to try to correct the error. If the configuration

scrub can repair this error, the error is non-persistent. Then the whole system return

to its normal operation without processor context recovery, since the faulty processor

will perform correct synchronized functioning with the other after configuration scrub.

On the contrary, if the error cannot be repaired by the configuration scrub, the error

is either persistent or permanent. At that time, the partial reconfiguration is launched

to try to eliminate it. Again, if the error still persists, the fault caused by the error

is permanent, consequently Tiling is launched to correct this permanent fault. After

the fault correction, the dual processors enter the recovery process to synchronize their

states. Recall that the configuration scrub does not interrupt the operation of the design.

So the non-persistent bit elimination using configuration scrub does not affect operation

delay in the related processor, hence does not require context recovery to resynchronize

the two processors.

5.5 State recovery procedure for enhanced lockstep scheme

Once a core is found faulty, it is reconfigured to bring it back to its initial state as at

the start-up, which is followed by loading in it the same state as the other core. Recall

that the Comparator can signal an error caused by a fault in the dual core, without

the capability of indicating the faulty core. However, thanks to the fault diagnostic

process running in background (configuration scan and bitstream parsing), it is possible

to diagnose the faulty core. It is also likely that the fault diagnosis would report an

error dispite the comparator indicates no mismatch, which would only mean that a non-

sensitive bit was flipped (i.e., one which has no effect on the design). After the core

reconfiguration, its state recovery process is launched, as shown in Fig. 5.8.

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 93

!"#$%&'(

)*+,-$%(

./,+/(

0$%"(

1234,/#5(

6%/"++*7/(

89:(

89;(

.<=(

!"#$>"+?(
!" !"

#"

$"

%" &"

.#,%(

'" ("

.#,%(!"#$>"+?(

Figure 5.8: Rollforward state recovery process for enhanced lockstep scheme

We use the following rollforward procedure to recover and synchronize the states of the

two softcore MicroBlazes µP1 and µP2. The context of each consists of the contents

of 32 General Purpose Registers and two Special Registers (each has 32 bits). During

normal execution of both cores (A), if an SEU is detected by a mismatch (B), the

scan process (C) is launched immediately to localize the error (here it is in µP2) and the

reconfiguration process corrects the error (D). During that time, the non-faulty processor

continues the task execution. Once the reconfiguration is completed (E), µP2 signals its

ready status for the state recovery procedure to the Context Recovery Block. The moment

of recovery is decided by µP1 (e.g., it can wait until the end of a critical task that should

not be interrupted). To start the recovery process, µP1 signals the Context Recovery

Block inside the COMP_MUX to start recovery via RB1 bus. The Context Recovery

Block sends immediately an interrupt signal via buses RB1 and RB2 to announce the

two cores to begin recovery (F). After the recovery process, the two cores resynchronize

themselves (G) and continue executing correctly the task (return to A).

The recovery process is detailed in Fig. 5.9. The Context Recovery Block launches an

interrupt (INT) to force both cores to enter the recovery routine (Start). At the begin-

ning, µP1 saves its context in the shared memory BRAM of the Context Recovery Block,

while µP2 is waiting for the context saving process to finish (Wait for SAVE_DONE).

Then, µP2 starts restoring the context (Restore Context), while µP1 waits for the

synchronization signal from the Context Recovery Block. Once µP2 finishes restoring

(RESTORE_DONE), it signals its ready status for synchronization to the Context

Recovery Block (Wait for SYNC) in order that the Context Recovery Block instantly

sends a synchronization signal (SYNC), and both cores are liberated from recovery to

continue tasks execution in a synchronized manner.

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 94

µP1 Context Recovery Block µP2

INTINT

SAVE_DONE

SAVE_DONE

RESTORE_DONE

SYNCSYNC

Save
C
ontext

Wait for SYNC

Wait for SYNC

R
estore

C
ontext

Wait for SAVE_DONE

Start

Finish

t

Figure 5.9: Recovery process detail for the enhanced lockstep scheme

5.6 Implementation details and comparison

We have implemented the system of Fig. 5.3 using Xilinx Virtex-5 XC5VSX50T device

and Xilinx Design Suite v9.2. (Its layout view is shown in Fig. 5.10.) The dual lockstep

cores operate at 125 MHz (one cycle takes 8 ns) whereas each of the three PicoBlazes

inside the FT Configuration Engine runs at 50 MHz (one cycle takes 20 ns).

Figure 5.10: 90◦-rotated view of implemented system

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 95

To deal with permanent faults, the tiling technique is implemented in our system in

the two processors (µP1 and µP2) and in the COMP_MUX. Figure 5.11 shows different

implementations using PROHIBIT macro (p. 46) which allow to avoid using a zone inside

the PRR of µP1. Notice that in each implementation, the corresponding prohibited zone

has a different location. And the classical reconfiguration scrub techniques cannot deal

with permanent faults.

Figure 5.11: Three tiling implementations of µP1

Here exists a compromise between the tiling granularity against the external memory

stocking capacity for tiling configuration bitstreams. The finer granularity (the finer

prohibited zone) of tiling, the more configurations is required to cover the whole PRR,

hence the more external memory space is needed to store these configurations. Supposing

that a prohibited zone corresponds to a frame, the number of needed configurations is

the number of frames occupied by the related processor. To reduce the stocking cost, we

can generate only differential bitstream between two neighbor frames. In that case, the

bitstream is considerably reduced. There are two major issues needed to be solved using

this solution:

1. Between to configurations, except for the two prohibited zone (prohibited frame),

all other frames must be the same. So that only 2 related frames need to be

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 96

modified when switching from one configuration to another.

2. A big challenge comes with the existence of persistent bits inside the permanently

defected frame. In case that some configuration bits of the permanently faulty

zone are persistent, the whole processor need to be reseted which requires either

the reset signal controlled by the FT Configuration Engine, or the reconfiguration

of the whole processor, or the global reset of the entire platform.

Table 5.1: FPGA resource occupations of enhanced lockstep modules

Module Slices BRAM [KB]
One Configuration Engine 120
Voter 20
One MicroBlaze Processor 560 32
COMP_MUX 60 4
XC5VSX50T 32640 132

The system that we have implemented has the following characteristics (Table 5.1). One

configuration engine occupies 120 slices, the voter inside the FT Configuration Engine

occupies 20 slices. Recall that the FT Configuration Engine that supervises the whole

FPGA is hardened by TMR with 2-out-of-3 majority voter. Each Configuration Engine,

the dual core lockstep block, and the COMP_MUX (except for the majority voter that

drives the output signals of the FT Configuration Engine) are dynamically reconfigurable

to be able to deal with soft errors in the configuration memory. Therefore the whole

system can cope with soft errors excluding only the voter, which however occupies only

20 Slices, so that its error probability is negligible compared to the whole system. If

necessary, this small voter can be implemented using external hardened components.

The hardware overhead of the FT Configuration Engine is 3 × 120 + 20 + 60 = 440

Slices (three Configuration Engines, the voter, and the COMP_MUX). This constant

overhead appears only once in the FPGA independently on the user design. Besides,

there is an overhead of one extra MicroBlaze Processor (560 Slices) to implement the

lockstep scheme.

The duration of task interrupt (in case of a single error) depends on the source of error:

• An error in the COMP_MUX:

ti1a = tsCM (5.1)

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 97

if a non-persistent error occurs in the COMP_MUX, and

ti1b = tsCM + trCM (5.2)

if a persistent error occurs in the COMP_MUX,

where: tsCM and trCM are respectively the COMP_MUX scan time and the re-

configuration time.

• An error in a processor core:

ti2a = tsCM + tsP + tsw (5.3)

if a non-persistent error occurs in the dual-core lockstep module, and

ti2b = tsCM + tsP + tsw + trec (5.4)

if a persistent error occurs in the dual-core lockstep module,

where tsP—one processor core scan time,

tsw—the time to switch the COMP_MUX, and

trec—the time to recover the processor context in case of persistent bit.

The FT Configuration Engine requires 41 clock cycles to complete a frame scan. The

maximum time for the fault localization is the time required for scanning the COMP_MUX

and one processor core. Because the COMP_MUX and one softcore occupies 3 (60 slices

and 4 KBytes BRAM) and 30 (560 slices and 32 KBytes BRAM) configuration frames,

respectively, tsCM = 3 × 41 × 20 ns = 2.5 µs and tsP = 30 × 41 × 20 ns = 25 µs. If

the FT Configuration Engine detects an error in the COMP_MUX, the reconfiguration

of COMP_MUX takes trCM = 185 µs.

The time for COMP_MUX to switch the output of dual-core module is negligible (only

one clock cycle—8 ns).

The COMP_MUX contains a 4 KBytes BRAM that is shared by the two cores for the

state recovery process even if 1 KBytes is sufficient. These 4 KBytes BRAM are the

smallest amount that can be chosen corresponding to an elementary BRAM block in the

device matrix.

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 98

Figure 5.12: Context recovery C code

Figure 5.12 shows the C code of the processor context saving and restoring processes.

The registers R1-R31, the Machine Status Register (MSR) and the Program Counter

(PC) register are saved from the starting address 0x83C18000 of the BRAM inside the

COMP_MUX. The context saving and restoring processes need respectively 272 cycles

(272 × 8 ns = 2.2 µs) and 325 cycles (2.6 µs). The time of the whole recovery process

consisting of the context saving, restoring and control duration of Fig. 5.9 is trec = 5.2

µs.

So the maximum system time overhead results from the duration of task interrupt when

a sensitive error occurs, which is:

ti1a = 2.5 µs; ti1b = 2.5 + 185 = 187.5 µs—if respectively a non-persistent or persistent

error occurs in the COMP_MUX, and

ti2a = 2.5 + 25 = 27.5 µs; ti2b = 2.5 + 25 + 5.2 = 32.7 µs—if respectively a non-persistent

or persistent error occurs in the dual-core lockstep module.

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 99

The parsing process of the Bitstream Parser occurs only once during the system startup

and it does not influence the system tasks execution, so its timing is irrelevant. This

process, which analyzes the bitstream and enumerates all the concerned frame addresses

of the correspondent PRRs, is implemented as a software piece of the PicoBlaze inside

the Configuration Engine.

Table 5.2: Comparison between approaches (trec = 5.2 µs)

Simple
Processor

Basic
Lockstep

TMR
Softcore † [74]

Our
Approach

Hardware
Resources [%] 100 ∼200 + 80 ∼300 ∼200 + 80

Time
Overhead [trec]

N.A. 20000 1 36

Services
Continuity No Low High High

† An external computer must be used for reconfiguration

Because for the FPGA lockstep system, only a system using hardcore embedded processor

PowerPC was suggested [31] and the only fault-tolerant FPGA implementation using the

MicroBlaze softcore processor was proposed using TMR in [74], we have also implemented

the basic lockstep scheme using softcore processors. The two softcores and the voter are

bound to one PRR. We found that the hardware overhead of the basic lockstep is the

same as of the proposed enhanced lockstep solution: either system consumes twice of

hardware resources than the simple processor. Obviously, there must be a spare processor

which controls the reconfiguration process of the dual-core module in case of mismatch.

This spare processor itself needs to be fault-tolerant, thus we have chosen the TMR

implementation of the 8-bit PicoBlaze like in the FT Configuration Engine. This fault-

tolerant spare processor uses the same amount of resources as the FT Configuration

Engine (i.e., 80% of those of the simple processor).

Our solution requires significantly lower time overhead. Firstly, because the scan process

which pauses the system is much shorter than the reconfiguration process of the whole

dual-core block to correct an error according to the basic lockstep scheme. (Recall

that the maximum time overhead when an error occurs in the enhanced lockstep is the

scan time and the proposed rollforward recovery time.) Secondly, the time overhead of

the proposed enhanced lockstep scheme, dominated by tscan, is about 36 times greater

than the trec (the proposed rollforward recovery duration). Furthermore, the proposed

rollforward recovery strategy used in our system is always faster than the check-pointing

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 100

and rollback strategies used in a basic lockstep scheme. The time overhead when an error

occurs in the basic lockstep scheme is dominated by the correction process using dynamic

reconfiguration (more than 20000 times longer than one rollforward recovery). Moreover,

the major drawback of the basic lockstep is low continuity of services, because after error

occurrence, its dual-core module needs to be reconfigured immediately to correct error.

Compared to the TMR softcore approach from [74], our solution enjoys an advantage

of smaller hardware overhead. Although the TMR softcore system requires very short

time overhead, the reconfiguration process is done externally using computer which con-

nects to the external reconfiguration port. The major advantage of our system is that

the reconfiguration is performed in real-time without external intervention and that the

enhanced lockstep scheme proposed here provides as high continuity of services as the

TMR softcore approach. Especially, a huge advantage of low hardware overhead comes

with the design of an MPSoC system due to the presence of only one FT Configura-

tion Engine in one FPGA. An MPSoC system applying our approach incurs a constant

hardware overhead of the FT Configuration Engine (440 slices) and 560 slices for each

added processor. In an MPSoC system applying TMR, 1120 slices (2 × 560) overhead

is required for each added processor. Fig. 5.13 gives a comparison between the two

approaches in term of hardware overhead varying in function of processor (µP) numbers.

!"#$%

&"#$%

'"#$%

("#$%

)"#$%

*"#$%

&##$%

(##$%

*##$%

"##$%

!###$%

!&##$%

!% &% '% (%)% *%

!
"
#$
%
"
#&
'(
)
&
#
*
&
"
$
'

+#,-&..,#'/012&#.'

+,-.%

/01%

Figure 5.13: MPSoC systems with hardware overhead comparison
(560 slices = 100%)

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 101

To validate the efficiency of the fault-tolerant approach, we have implemented a fault-

injection campaigns for µP1 and the COMP_MUX, realized by the FT Configuration

Engine. Single configuration faults are injected using the configuration scrub technique

(Section 2.5.2 p. 32) through ICAP. First, the chosen configuration frame is read, one bit

(indicated by its position inside the frame) is flipped, and then the fault-injected frame is

written also using configuration scrub. The configuration upset must be corrected before

the fault-injection of the next configuration bit. The automatic fault-injection engine is

performed by the Configuration Engine with all the bits of µP1 and the COMP_MUX.

µP1 occupies 30 configuration frames, whereas the COMP_MUX occupies 4 frames.

Since the malfunction occurred due to the faults in the BRAM of the COMP_MUX

are not evident to observe, we do inject faults only in 60 slices of this block. Each

configuration frame contains 1312 bits (41 words of 32-bits).

Table 5.3: Statistic fault-injection results

Module Slices Utilization Sensitive
Bits Sensitivity Persitence Code

Size
BRAM
Sensitivity

BRAM
Persistence

µP1 560 88% 3165 8.6% 2.3% 3.3 KBytes 2.97% 0.59%
COMP_MUX 60 83% 83 8.4% 0.4%

A matrix multiplication software code ([32][32]×[32][32]), which has the size of 3.3

KBytes, runs in the program memory BRAM of µP1. Also three slice configuration

frames of the COMP_MUX are investigated. The BRAM configuration frame of the

COMP_MUX is not investigated. The results of the fault-injection campaigns in the

slice and BRAM configuration frames of µP1 and slice configuration frames of the

COMP_MUX are shown in Table 5.3. The Configuration Engine performs the fault

correction process after each fault-injection. The Configuration Engine first uses the

configuration scrub to correct non-sensitive and non-persistent sensitive configuration

bits. Then, in case of persistent bits, the partial reconfiguration of the whole µP1 is

performed to put it back to the normal operation. Thanks to this fault-injection engine,

it is possible to find out the sensitive bits of all the configuration frames. So that in

case of error, we scan the configuration frames in the order of their sensitivities, the

configuration frame which has the most sensitive bits will be scanned first. Based on the

fault-injection results given in Table 5.3, the average interrupted duration caused by a

configuration error in µP1 is: 32.7 µs × 2.3% + 27.5 µs × (8.6 - 2.3)% = 2.5 µs.

If we take the case of the lockstep without the identification capability. The two processor

modules have to be reconfigured at the same time to eliminate the sensitive error which

Chapter 5. Low Overhead Fault-Tolerant Reconfigurable Softcore Processor 102

requires 7.5 ms to complete. The average interrupted duration caused by a configuration

error in the lockstep is: 7.5 ms × 8.6% = 65 µs, which is 26 times longer than our

enhanced lockstep.

5.7 Conclusion and Perspectives

We have proposed a new architecture of a fault-tolerant reconfigurable system which can

be implemented on any FPGA with integrated softcore processors. An enhanced lockstep

scheme built using a pair of MicroBlaze cores was implemented on Xilinx Virtex-5 FPGA.

Unlike the basic lockstep scheme, our system allows to identify the faulty core using a

configuration engine built using PicoBlaze cores which, to avoid a single point of failure,

was implemented as fault-tolerant using TMR. The exact error location is determined

by a specially designed Bitstream Parser which allows to correct errors through partial

reconfiguration combined with rollforward recovery technique. As a result, there is no

problem of fault latency, because faults are detected immediately once they cause an

error. Compared to similar existing designs, the new architecture enjoys smaller hardware

and/or time overhead and does not need any external reconfiguration support. To note

that the proposed system can also be adapted to the new Virtex-6 devices which also

contains FRAME_ECC and ICAP primitives.

To validate the effectiveness of the fault-tolerant architecture proposed, we have provided

the configuration engine with the possibility of on-line fault injection that allows us to

carry out automatically fault-injection campaigns and provides statistically meaningful

results.

Chapter 6

Conclusion and Perspectives

6.1 Conclusion

The rising computing need of electronic products demands large scale integration of

electronic control. The automobile industry has evolved from mechanical control to

mechatronic control so-called X-by-Wire. A modern car integrates a lots of additional

services i.e.: navigation, infotainment and Advanced Driver Assistance Systems (ADAS)

which can contains up to hundreds of ECUs. In particular, automotive control requires

high reliability safety of drivers and pedestrians. Hence electronic products need to

be hardened either by fabrication technology or by implementation design techniques.

Harden circuit by fabrication technology is really costly and this process is only suit-

able for high-volume production. By doing that process, each particular company has

its own Original Equipment Manufacturer (OEM) products which cannot be replaced

by another company’s solutions. Commercial FPGAs become a good candidate to be

appeared in mission-critical environment because of the high-density reconfigurable re-

sources, cheaper prices and low maintenance services. However, FPGAs are sensitive to

electronic particles, and they require fault-tolerance schemes to be applied in the system.

In particular, using commercial SRAM-based FPGAs are very valuable remote critical

missions due to their possibility of being reprogrammed by the as many times as nec-

essary in a very short period. As a result, additional benefits of SRAM-based FPGAs

such as short time-to-market, short development time and high service continuity are

offered. Moreover dynamically reconfigurable FPGAs allow for online design changes

and thus reduce the cost by correcting errors or improving system performance after

103

Chapter 6. Conclusion and Perspectives 104

deployment. The increase of logic complexity of the programmable logic with more and

more embedded reconfigurable logic in one FPGA device can respond to the computa-

tion need growth in automotive electronic. The human safety constraints require the

integration of fault-tolerance scheme in the electronic products to adapt to the variously

harsh environment.

During this thesis, we studied and considered state-of-the-art solutions of the fault-

tolerance which does not only target the automotive domain. We have managed to

bring some novelties onto many fault-tolerant aspects for safety-aimed solutions. We

have implemented a fully dynamic fault-tolerant MPSoC which can deal with temporary

and permanent fault in the FPGAs. Several fault mitigation schemes were proposed

and implemented in our FT-DyMPSoC system: connection matrix algorithm to detect

the fault, partial reconfiguration and tiling to correct error, and rollback combined with

checkpoint to recover the system software context after error occurrence.

We have proposed and implemented a Computer-Aided Design (CAD) extension that

modifies the standard methodology of the run-time self-reconfiguration. This CAD ex-

tension facilitates and speed-up the FT-DyMPSoC construction. The concept of socket

and wrapper is to ease the designer modification on original design. The intervention of

designer is shorten because the system complexity is already managed by the CAD tools.

The design flow modification is not only limited to building-up our FT-DyMPSoC, but

also allows for constructing any complex modular system with necessary minor change

on initial design.

Analytical model is proposed to evaluate the trade-off of various fault-tolerance schemes.

Using this model, we evaluated our FT-DyMPSoC system compared with scrubbing.

Slight decrease in performance can achieve a considerable gain in reliability. The model

has a wide applicability which is not restricted to our system, but can be applied to any

fault-tolerant scheme by feeding the appropriate parameters to the model.

The scales of the designs are increasing, and it take much more time for the total design

period. Conventionally, verification takes up a large part of the total design period. One

method to reduce design and validation time for MPSoCs is to use high-level simulation

with modeling languages such as SystemC, OpenVera,.... The model permitting high-

level simulation/verification provides designers opportunities to run faster, high-level

simulation models, and compared with detailed hardware models. Thus the simulation

Chapter 6. Conclusion and Perspectives 105

models allow for first, quickly verifying the effectiveness of the fault-tolerance schemes

applied in the system, secondly speeding-up the period of user-application design and

debug. A high-level model for fault-tolerant systems is built to help verify the fault-

tolerance aspects as well as develop quickly applications associated with the system.

A low overhead system for reconfigurable softcore processor is also proposed and imple-

mented. The system consisting of dual processor module and two particular modules:

fault-tolerant configuration engine and COMP_MUX, enjoy the low hardware and tim-

ing overhead advantages. Besides reconfigurable processors, these particular modules

have multi-functional capability that can use for any module to enhance the reliability

of the target design.

We have implemented a software piece able to extract and write back the software context

of softcore processors MicroBlaze, thanks to the capability of read/write/modify the

functional registers inside the MicroBlaze. It could be applied also to hardcore processors

PowerPC. So when integrating another module into the system with the fault tolerant

configuration engine and the COMP_MUX, an effective recovery technique of the related

module should be taken into account.

6.2 Perspectives

During the thesis, we have managed to complete all the proposed solutions. There exists

anyway several future works to help enhance our proposals and some perspectives beyond

the thesis.

In 5.3.2, we introduce the fault-tolerant configuration engine (FT Configuration Engine)

that can be integrated in FT-DyMPSoC presented in Chapter 3. The combination with

FT Configuration Engine can avoid duplication of processor in the lockstep scheme of

FT-DyMPSoC which can save a huge hardware cost. Nevertheless the system may suffer

a penalty on performance because of correcting non-sensitive bits which are measured

much more numerous than sensitive bits. One proposal is to use an algorithm covering

all logic blocks for consistency check. The algorithm is for functional checking that

verify the state of all the blocks inside processors. Hence lockstep scheme with processor

duplication is no longer necessary. That solution enjoy a lower hardware cost but a

performance degradation could appear due to the functional blocks consistency check.

Chapter 6. Conclusion and Perspectives 106

This solution is better than the architectural check such as readback, because the non-

sensitive bits which do not affect the computing process are not detected by the functional

check, so does not induce system performance decrease.

The proposed analytical model provides a fast evaluation, verification method for fault

mitigation schemes. However, the accuracy of the model still needs to be validated

which requires different results from various fault-injection campaigns on various fault

mitigation schemes. The same scope needs to be taken into account for the high-levle

simulation/verification model. A more complete model that can provide more precise

results will be carried out. On possibility is to use Instruction Set Simulator (ISS)

to provide more timing accuracy. The construction of proposed systems requires lots

of manual intervention that demands designers to have certain understandings on the

design tools and devices. That could prevent the proposals from being accepted from

large public. The envisaged automation will help to facilitate the system built-up with

minor intervention required from, hence easily handled by the designers.

We plan to automate the CAD extension of the design flow for complex module-based

reconfiguration. The auto-generation of socket and wrapper will accelerate the design

process and minimize the designer intervention period. In this automatic program, we

will integrate also the configuration engine which helps detect and also inject any config-

uration error. The COMP_MUX auto-insertion is also carried out if the designer wants

to implement the enhanced schemes like our proposal. A general-purpose fault-injection

tool with user-friendly interface will also be implemented in the CAD extension. Instead

of using expensive ion-bombardement processes, this tool will help designers to test their

fault-tolerance strategies with the particular module as well as with benchmark design

under test (DUT) modules.

We implemented in our proposed system software context recovery strategies for soft-

core processors. In some cases, the context of hardware peripheral blocks also need to

be saved and restored if necessary. That requires the possibility of reading/writing the

functional registers defining the block states. The architectural registers of the reconfig-

urable elements can be read using readback capture. Nevertheless, these values can be

only used if the same block with the same place and route implementation are applied

onto the FPGA matrix, thus they are useless due to a permanent fault which requires

tiling technique with a different place and route strategy of the same functional block.

Chapter 6. Conclusion and Perspectives 107

A generic method allowing for extracting functional registers of hardware modules will

be studied and realized in the short term.

Regarding the multi-FPGA platform, in stead of exchanging the detection frames with

random data, we plan to integrate the software processor context inside the detection

frame. Exchanging this frame through the ethernet network, on the one hand can help to

detect error in the entire system, on the other hand help recover the processor with the

context which is previously exchanged. Thus, it help the system to enhance the service

continuity and minimize the functional interrupt.

During the thesis, we take into concern the failure effects of the circuit and are interested

in how to overcome these problems. However another failure that can be important in

mission-critical application is systematic failure. This kind of failure produced by the

error during the design process, not by a circuit defect. An error in programming the

processor, a missing signal while coding hardware block in VHDL, all sorts of systematic

failure can induces catastrophic consequences on people and environment. This kind

of failure can not be corrected using normal homogenous redundancy, since the error

appears in all the copies of the redundancy. We mention here the functional safety [76]

which requires the design diversity to avoid systematic failures and also manage random

hardware failures. A given functionality should be implemented in different ways at the

same time, and the results are compared to choose the correct one. For example, instead

of implementing a function in the softcore processor only, we implement this function on

the softcore processor, on the hardcore processor and also on a DSP processor. A special

majority voter chooses the correct results from these three outputs. The function for three

targets needs three different ways of programming that can avoid systematic error in one

programming. This diverse platform can also deal with temporary hardware failure. It is

interesting to imagine to design a new FPGA with dynamically reconfigurable resources.

In this FPGA matrix, we could find a DSP processor, a hardcore generic processor

like PowerPC or ARM. Several radiation-hardened majority voters are also present in

the FPGA matrix for homogenous redundancy as well as diverse redundancy. In this

new device matrix, all the proposals during the thesis can be quickly implemented.

Furthermore, thanks to the diversity, the coding errors will appear in only one module

because the development phase of each module is fully decoupled. Multiple level of safety

should be handled using this new FPGA, which really fulfills automotive domain safety

requirements.

Chapter 6. Conclusion and Perspectives 108

Hardware platforms are quickly evolving from a single generic processor to multi-processor

systems to respond to customer requirements. This trend forces the specific customer

functionality to be integrated into system as software rather than hardware. As conse-

quence, the added software functionality is causing an exponential growth rate in the

automotive embedded software market. Traditionally, the schedule is carried out due to

the availability of real-time operating system, which helps to shorten development phases

and ensure the reactivity of the system. Thus software platforms should be compliant

with industry standard to help alleviate the integration of new hardware platforms. Au-

tosar [77] has been created to develop an open industry standard for automotive software

architectures. To achieve the technical goals of modularity, scalability, transferability,

and function reusability, Autosar provides a common software infrastructure based on

standardized interfaces for the different layers. In Autosar, software developments are

de-correlated with hardware architectures (ECUs) to allow reuse and relocation of vehicle

functions. A new constraint in designing an automotive electronic system the software

compliance with the standard Autosar.

Personal Publication

• H-M. Pham, S. Pillement, and D. Demigny. Reconfigurable ECU Communica-

tions in AUTOSAR Environment. In International Conference on ITS Telecom-

munications, Lille, France, October 2009.

• H-M. Pham, S. Pillement, and D. Demigny. A Fault-Tolerant Layer For Dynam-

ically Reconfigurable Multi-Processor System-on-Chip. In Proc. Int. Conf. on

ReConFigurable Computing and FPGAs, pages 284–289, Cancun, Mexico, Decem-

ber 2009.

• H-M. Pham, S. Pillement, and D. Demigny. FT-DyMPSoC: Analytical Model

for Fault-Tolerant Dynamic MPSoC. In International IEEE Symposium on Field-

Programmable Custom Computing Machines, May 2010.

• H-M. Pham, L. Devaux, and S. Pillement. Dynamic NOC-based MPSoC with

Fault-Tolerance Support. In DAC Workshop on Diagnostic Services in Network-

on-Chips, June 2010.

• H-M. Pham, S. Pillement, and D. Demigny. Evaluation of Fault-Mitigation

Schemes for Fault-Tolerant Dynamic MPSoC. In International Conference on Field

Programmable Logic and Applications, Milano, Italy, September 2010.

• H-M. Pham, S. Pillement, and S. Piestrak. Low Overhead Fault-Tolerance

Technique for Dynamically Reconfigurable Softcore Processor. Submitted to IEEE

Transactions On Computers.

109

Abbreviations

ADAS Advanced Driver Assistance System

API Application Program Interface

ASIC Application Specific Integrated Circuit

CAD Computer-Aided Design

CIFAER Communication Intra-véhicule Flexible et

Architecture Embarquée Reconfigurable

CLB Configurable Logic Block

COMP_MUX COMParator/MUltipleXer

COTS Commercial Of-The-Shelf

CPLD Complex Programmable Logic Device

CRC Cyclic Redundancy Check

DRAFT Dynamic Reconfigurable Adaptive Fat-Tree

DSP Digital Signal Processing

DUT Design Under Test

DWC Duplication With Comparison

ECU Electronic Control Unit

EDAC Error Detection And Correction Coding

EDK Embedded Development Kit

FAR Frame Address Register

FPGA Field Programmable Gate Array

FSL Fast Simplex Links

FSM Finite State Machine

FT-DyMPSoC Fault-Tolerant Dynamic Multi-Processor System-on-Chip

HCE Hot-Carrier Effect

ICAP Internal Configuration Access Port

110

Abbreviations 111

IP Intellectual Property

ISE Integrated Software Environment

LUT Look-Up Table

MBU Multiple Bit Upset

MPSoC Multi-Processor System-on-Chip

MSR Machine Status Register

NoC Network-on-Chip

NRE Non Recurring Engineering

OEM Original Equipment Manufacturer

PC Program Counter

PLB Processor Local Bus

PLC Power Line Communication

PRM Partially Reconfigurable Module

PRR Partially Reconfigurable Region

RAMPSoC Runtime Adaptive Multi-Processor System-on-Chip

RB Recovery Bus

Re2 DA Reliable and Recofigurable Dynamic Architecture

RF Radio Frequency

RISC Reduced Instruction Set Computing

SAPECS Secured Architecture and Protocols for Enhanced Car Safety

SBU Single Bit Upset

SDK Software Development Kit

SEC-DED Single Error Correction-Double Error Detection

SEE Single Event Effect

SEFI Single Event Functional Interrupt

SEGR/SEB Single Event Gate Rupture/Burnout

SEL Single Event Latch-up

SET Single Event Transient

SEU Single Event Upset

TMR Triple Modular Redundancy

VHDL Very-High-Speed Integrated Circuit (VHSIC)

Hardware Description Language

Bibliography

[1] Dhiraj. K. Pradhan and Nitin. H. Vaidya. Brief Contributions: Roll-Forward and

Rollback Recovery: Performance-Reliability Trade-Off. IEEE Transactions on Com-

puter, 46(3):372–378, 1997.

[2] TRW Automotive. http://ir.trw.com/.

[3] Xilinx, Inc. Virtex-5 FPGA Configuration User Guide UG191 (v3.6), 2009. URL

www.xilinx.com/support/documentation/user_guides/ug191.pdf.

[4] S. Young. Maximizing Silicon ROI: The Cost of Failure and Success, 2002.

[5] http://www.insa-rennes.fr/ietr-cifaer.

[6] P. Tanguy, F. Nouvel, and P. Maziéro. Power Line Communication Standards for

in-Vehicle Networks. In International Conference on ITS Telecommunications, 2009.

[7] Xilinx, Inc. Correcting Single-Event Upsets Through Virtex Partial Configu-

ration (XAPP216 v1.0), June 2000. URL http://www.xilinx.com/support/

documentation/application_notes/xapp216.pdf.

[8] H.C. Hsieh, W. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Freidin,

L. Tinkey, and R. Kanazawa. Third-generation Architecture Boosts Speed and

Density of Field-Programmable Gate Arrays. In IEEE Custom Integrated Circuits

Conference, pages 31.2.1–31.2.7, 1990.

[9] S. Trimberger. Effects of FPGA Architecture on FPGA Routing. In The 32nd

annual ACM/IEEE Design Automation Conference, pages 574–578, 1995.

[10] Xilinx, Inc. PowerPC 405 Processor Block Reference Guide, 2004. URL www.

xilinx.com/support/documentation/user_guides/ug018.pdf.

112

www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp216.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp216.pdf
www.xilinx.com/support/documentation/user_guides/ug018.pdf
www.xilinx.com/support/documentation/user_guides/ug018.pdf

Bibliography 113

[11] Xilinx, Inc. MicroBlaze Processor Reference Guide UG081 (v10.3), 2009. URL http:

//www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf.

[12] Xilinx, Inc. PicoBlaze 8-bit Embedded Microcontroller User Guide UG129 (v2.0),

January 2010.

[13] Altera Corporation. Excalibur Devices Hardware Reference Manual (V3.1), 2002.

[14] Altera Corporation. Nios II Processor Reference Handbook, 2005.

[15] Xilinx, Inc. Two Flows for Partial Reconfiguration: Module Based or Small Bit

Manipulations (XAPP290), 2002.

[16] Xilinx, Inc. Early Access Partial Reconfiguration User Guide UG208, September

2008.

[17] Xilinx, Inc. Virtex-6 FPGA Configuration User Guide UG360 (v3.1), July 2010.

[18] Xilinx, Inc. Virtex-4 FPGA Configuration User Guide UG071 (v1.11), June 2009.

[19] Xilinx, Inc. Embedded System Tools Reference Guide UG111, 2009.

[20] Xilinx, Inc. http://www.xilinx.com/.

[21] Xilinx, Inc. Xilinx PlanAhead User Guide (UG632 v11.4), Dec 2009. URL http:

//www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf.

[22] Nasa. Radiation Effects on Digital Systems. URL http://radhome.gsfc.nasa.

gov/top.htm.

[23] Actel Inc. RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs, August 2010.

[24] Xilinx, Inc. Radiation-Hardened, Space-Grade Virtex-5QV Family Overview DS192

(v1.1), August 2010.

[25] G.E. Moore. Progress in Digital Integrated Electronics. In Digest of the 1975

International Electron Devices Meeting, pages 11–13, New York, 1975.

[26] R. Koga, SH Penzin, KB Crawford, and WR Crain. Single Event Functional Inter-

rupt (SEFI) Sensitivity in Microcircuits. In European Conference on Radiation and

Its Effects on Components and Systems, pages 311–318, 1997.

http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://radhome.gsfc.nasa.gov/top.htm
http://radhome.gsfc.nasa.gov/top.htm

Bibliography 114

[27] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Vijaykrishnan, and K. Sarpatwari. FLAW:

FPGA Lifetime Awareness. In The 43rd Annual Design Automation Conference,

page 635. ACM, 2006.

[28] A.A.M. Bsoul, N. Manjikian, and L. Shang. Reliability-and Process Variation-Aware

Placement for FPGAs. In Design, Automation and Test in Europe, 2010.

[29] S. Mahapatra, R. Rao, B. Cheng, M. Khare, C.D. Parikh, JCS Woo, and J. Vasi.

Performance and Hot-Carrier Reliability of 100 nm Channel Length Jet Vapor De-

posited Si3N4 MNSFETs. IEEE Transactions on Electron Devices, 48(4):679–84,

2001.

[30] RC Baumann. Single-Event Effects in Advanced CMOS Technology. In IEEE

Nuclear and Space Radiation Effects, 2005.

[31] Xilinx, Inc. PPC405 Lockstep System on ML310 (XAPP564 v1.0.2), 29 Jan-

uary 2007. URL http://www.xilinx.com/support/documentation/application_

notes/xapp564.pdf.

[32] Atmel. Secured Architecture and Protocols for Enhanced Car Safety (SAPECS),

2007.

[33] F. Lima, L. Carro, and R. Reis. Designing Fault Tolerant Systems into SRAM-based

FPGAs. In Design Automation Conference, pages 650–655. ACM New York, NY,

USA, 2003.

[34] M. Nicolaidis. Time Redundancy Based Soft-Error Tolerance to Rescue Nanometer

Technologies. In IEEE VLSI Test Symposium. IEEE Computer Society Washington,

DC, USA, 1999.

[35] W.W. Peterson and E.J. Weldon. Error-Correcting Codes. 1972.

[36] AD Houghton. the Engineer’s Error Coding Handbook. Chapman & Hall, 1997.

[37] University of Erlangen-Nuremberg. Project ReCoNets. URL http://www.

reconets.de/.

[38] Xilinx, Inc. Virtex FPGA Series Configuration and Readback XAPP138 (v2.8),

March 2005.

http://www.xilinx.com/support/documentation/application_notes/xapp564.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp564.pdf
http://www.reconets.de/
http://www.reconets.de/

Bibliography 115

[39] S.Y. Yu and E.J. McCluskey. Permanent Fault Repair For FPGAs With Limited

Redundant Area. In IEEE International Symposium on Defect and Fault Tolerance

in VLSI Systems, pages 125–133, 2001.

[40] Xilinx, Inc. SEU Strategies for Virtex-5 Devices (XAPP864), 5 March

2009. URL http://www.xilinx.com/support/documentation/application_

notes/xapp864.pdf.

[41] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. An Efficient and

Low-Cost Design Methodology to Improve SRAM-Based FPGA Robustness in Space

and Avionics Applications. In Proc. Int. Workshop on Reconfigurable Computing:

Architectures, Tools and Applications. LNCS, volume 5453, pages 74–84, 2009.

[42] B. Dutton and C. Stroud. Single Event Upset Detection and Correction in Virtex-4

and Virtex-5 FPGAs. In Int. Conf. on Computers and Their Applications, pages

57–62, 2009.

[43] H. Castro, A.A. Coelho, and R.J. Silveira. Fault-Tolerance in FPGA’s through CRC

Voting. In The 21st Annual Symposium on Integrated Circuits and System Design,

pages 188–192. ACM New York, NY, USA, 2008.

[44] C. Pilotto, J.R. Azambuja, and F.L. Kastensmidt. Synchronizing Triple Modular

Redundant Designs in Dynamic Partial Reconfiguration Applications. In The 21st

Annual Symposium on Integrated Circuits and System Design, pages 199–204, 2008.

[45] H. Zheng, L. Fan, and S. Yue. FITVS: A FPGA-Based Emulation Tool For High-

Efficiency Hardness Evaluation. In IEEE International Symposium on Parallel and

Distributed Processing with Applications, pages 525–531. IEEE Computer Society,

2008.

[46] JBits 3.0 SDK. www.xilinx.com/labs/projects/jbits/.

[47] H. Guzmán-Miranda, M.A. Aguirre, and J. Tombs. Noninvasive Fault Classification,

Robustness and Recovery Time Measurement in Microprocessor-Type Architectures

Subjected to Radiation-Induced Errors. IEEE Transactions on Instrumentation and

Measurement, 58(5), 2009.

http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp864.pdf

Bibliography 116

[48] Xilinx, Inc. Single-Event Upset Mitigation Selection Guide (XAPP987 v1.0), March

2008. URL http://www.xilinx.com/support/documentation/application_

notes/xapp987.pdf.

[49] A. Grama. Introduction to Parallel Computing. Addison-Wesley, 2003.

[50] C. Haubelt, D. Koch, and J. Teich. Basic OS Support for Distributed Reconfig-

urable Hardware. In Computer Systems: Third and Fourth International Workshops,

SAMOS 2003 and SAMOS 2004. Springer, 2004.

[51] D. Gohringer, M. Hubner, T. Perschke, and J Becker. New Dimensions for Multi-

processor Architectures: On Demand Heterogeneity, Infrastructure and Performance

Through Reconfigurability-The RAMPSoC Approach. In International Conference

on Field Programmable Logic and Applications, pages 495–498, 2008.

[52] A. Montone, V. Rana, M.D. Santambrogio, D. Sciuto, and P. di Milano. HARPE:

A Harvard-based Processing Element Tailored for Partial Dynamic Reconfigurable

Architectures. In IEEE International Symposium on Parallel and Distributed Pro-

cessing, 2008.

[53] A. Klimm, L. Braun, and J. Becker. An Adaptive and Scalable Multiprocessor Sys-

tem for Xilinx FPGAs Using Minimal Sized Processor Cores. In IEEE International

Symposium on Parallel and Distributed Processing, 2008.

[54] Xilinx, Inc. Multi-Port Memory Controller (MPMC) (DS643 v6.00.a), April 2010.

[55] Xilinx, Inc. Fast Simplex Link (FSL) Bus (DS449), June 2007. URL http://www.

xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf.

[56] F. Abate et al. New Techniques for Improving the Performance of the Lockstep Ar-

chitecture for SEEs Mitigation in FPGA Embedded Processors. IEEE Transactions

on Nuclear Science, 56(4):1992–2000, Aug. 2009.

[57] A. Kanamaru, H. Kawai, Y. Yamaguchi, and M. Yasunaga. Tile-Based Fault Tol-

erant Approach Using Partial Reconfiguration. In Proc. Int. Workshop on Recon-

figurable Computing: Architectures, Tools and Applications. LNCS, volume 5453,

pages 293–299, 2009.

http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp987.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fsl_v20.pdf

Bibliography 117

[58] Wei-Je Huang and Edward J. McCluskey. Column-Based Precompiled Configuration

Techniques for FPGA Fault Tolerance. In Proc. Annu. Int. IEEE Symp. Field-

Programmable Custom Computing Machines, pages 137–146, 2001.

[59] Xilinx, Inc. Constraints Guide (UG625 v11.4), Dec 2009. URL http://www.xilinx.

com/support/documentation/sw_manuals/xilinx11/cgd.pdf.

[60] Ludovic Devaux, Sana Ben Sassi, Sebastien Pillement, Daniel Chillet, and Didier

Demigny. Flexible Interconnection Network for Dynamically and Partially Recon-

figurable Architectures. International Journal of Reconfigurable Computing, 2010

(390545):10.1155/2010/390545, 2010.

[61] T. Bjerregaard and S. Mahadevan. A survey of research and practices of network-

on-chip. ACM Computing Surveys (CSUR), 38:1–51, 2006.

[62] E. Salminen, A. Kulmala, and T. D. Hamalainen. Survey of network-on-chip pro-

posals. OCP-IP White Paper, http://www.ocpip.org/whitepapers.php, 2008.

[63] LightWeight IP. http://savannah.nongnu.org/projects/lwip.

[64] Xilinx, Inc. LogiCORE IP XPS Timer/Counter (DS573 v1.02a), April 2010.

[65] S. Tanoue, T. Ishida, Y. Ichinomiya, M. Amagasaki, M. Kuga, and T. Sueyoshi. A

Novel States Recovery Technique for the TMR Softcore Processors. In Proc. Int.

Conf. on Field Programmable Logic and Applications, pages 543–546, 2009.

[66] Xilinx, Inc. Device Reliability Report (UG116), Third Quarter 2009.

[67] K. Kyriakoulakos and D. Pnevmatikatos. A Novel SRAM-Based FPGA Architecture

for Efficient TMR-Processor Fault Tolerance Support. In International Conference

on Field Programmable Logic and Applications, 2009.

[68] Austin Lesea. Continuing Experiments of Atmospheric Neutron Effects on Deep

Submicron Integrated Circuits (WP286). Technical report, Xilinx Inc., 2009. URL

www.xilinx.com/support/documentation/white_papers/wp286.pdf.

[69] G, Beltrame, et al. High-Level Modeling and Exploration of Reconfigurable MP-

SoCs. In AHS-2008, pages 330–337, 2008.

[70] C. Amicucci, et al. SyCERS: A SystemC Design Exploration Framework for SoC

Reconfigurable Architecture. In ERSA’06, pages 63–69, 2006.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
www.xilinx.com/support/documentation/white_papers/wp286.pdf

Bibliography 118

[71] S. Xu, et al. A Multi-MicroBlaze Based SoC System: From SystemC Modeling to

FPGA Prototyping. In RSP’08, pages 121–127, 2008.

[72] M. Monchiero, et al. A Modular Approach to Model Heterogeneous MPSoC at Cycle

Level. In DSD’08, pages 158–164, 2008.

[73] IBM. Instruction Set Simulator User’s Guide (v1.3).

[74] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and T. Sueyoshi.

Improving the Robustness of a Softcore Processor against SEUs by Using TMR

and Partial Reconfiguration. In IEEE Annual International Symposium on Field-

Programmable Custom Computing Machines, pages 47–54, 2010.

[75] H-M. Pham, S. Pillement, and D. Demigny. A Fault-Tolerant Layer For Dynamically

Reconfigurable Multi-Processor System-on-Chip. In International Conference on

ReConFigurable Computing and FPGAs, pages 284–289, Cancun, Mexico, December

2009.

[76] Exida. IEC 61508 Overview Report. Technical report, 2006. URL

http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=e&wwwprog=

seabox1.p&progdb=db1&seabox1=61508.

[77] AUTOSAR GbR. AUTomotive Open System ARchitecture. URL http://www.

autosar.org/.

http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=e&wwwprog=seabox1.p&progdb=db1&seabox1=61508
http://www.iec.ch/cgi-bin/procgi.pl/www/iecwww.p?wwwlang=e&wwwprog=seabox1.p&progdb=db1&seabox1=61508
http://www.autosar.org/
http://www.autosar.org/

VU : VU :

Le Directeur de Thèse Le Responsable de l’École Doctorale

Didier DEMIGNY

VU pour autorisation de soutenance

Rennes, le

Le Président de l’Université de Rennes 1

Guy CATHELINEAU

VU après autorisation pour autorisation de publication :

Le Président de Jury,

	Acknowledgements
	List of Figures
	List of Tables
	Résumé en français
	Problématique
	Objectifs
	Contribution

	1 Introduction
	1.1 Problem statements
	1.2 The CIFAER project context
	1.3 Objectives
	1.4 Contributions and content

	2 Background and Related Works
	2.1 Reconfigurable architecture
	2.1.1 Introduction
	2.1.2 Reconfigurable processor

	2.2 Dynamic reconfiguration
	2.2.1 Definition
	2.2.2 Design flow

	2.3 Fault-tolerance in reconfigurable architectures
	2.3.1 Fault models in reconfigurable architectures
	2.3.1.1 Single Event Effect
	Single Event Upset
	Single Event Functional Interrupt
	Single Event Latch-Up
	Single Event Gate Rupture/Burnout

	2.3.1.2 Long terms cumulative degradation

	2.3.2 SEU effects on configuration memory
	Configuration upset classification

	2.4 Classical fault mitigation schemes
	2.4.1 Architectural level
	2.4.1.1 Hardware redundancy
	2.4.1.2 Time redundancy
	2.4.1.3 Error-correcting code

	2.4.2 System level
	2.4.3 Context recovery strategies
	2.4.3.1 Context introduction
	Processor context

	2.4.3.2 Checkpointing and Rollback Pradhan1997rfr
	2.4.3.3 Rollforward Pradhan1997rfr

	2.5 Strategies for SEU
	2.5.1 Readback
	2.5.2 Partial reconfiguration
	2.5.3 Combined approaches
	2.5.4 Fault-Injection

	2.6 Summary and Conclusions

	3 Fault-tolerance in dynamic multi-processor system-on-chip
	3.1 Abstract
	3.2 Introduction
	3.3 FT-DyMPSoC
	3.4 Design flow modification
	3.4.1 Design flow modification
	3.4.2 Socket
	3.4.3 Wrapper

	3.5 FT-DyMPSoC amelioration
	3.5.1 Re2DA system
	3.5.2 Multi-FPGA platform

	3.6 Implementation details
	Re2DA system
	Multi-FPGA platform

	3.7 Conclusion

	4 Analytical Model
	4.1 Abstract
	4.2 Introduction
	4.3 Analytical Model
	4.3.1 General definitions
	4.3.2 Analytical model for FT-DyMPSoC
	4.3.3 Model application for scrubbing

	4.4 Experimentation details and comparisons
	4.4.1 Implementation
	4.4.2 Comparison

	4.5 Conclusion
	4.6 Simulation and verification model for fault-tolerant MPSoC
	4.6.1 Implementation
	4.6.2 Analysis
	4.6.3 Conclusions and Future Works

	5 Low overhead fault-tolerant reconfigurable softcore processor
	5.1 Abstract
	5.2 Introduction
	5.3 New fault-tolerant architecture
	5.3.1 Enhanced lockstep scheme
	5.3.2 Fault-tolerant configuration engine
	5.3.2.1 Scan Motor
	5.3.2.2 Bitstream Parser

	5.4 Fault mitigation strategy
	5.5 State recovery procedure for enhanced lockstep scheme
	5.6 Implementation details and comparison
	5.7 Conclusion and Perspectives

	6 Conclusion and Perspectives
	6.1 Conclusion
	6.2 Perspectives

	Bibliography
	Abbreviations

